2,021 research outputs found
Coupled cavities for enhancing the cross-phase modulation in electromagnetically induced transparency
We propose an optical double-cavity resonator whose response to a signal is
similar to that of an Electromagnetically Induced Transparency (EIT) medium. A
combination of such a device with a four-level EIT medium can serve for
achieving large cross-Kerr modulation of a probe field by a signal field. This
would offer the possibility of building a quantum logic gate based on photonic
qubits. We discuss the technical requirements that are necessary for realizing
a probe-photon phase shift of Pi caused by a single-photon signal. The main
difficulty is the requirement of an ultra-low reflectivity beamsplitter and to
operate a sufficiently dense cool EIT medium in a cavity.Comment: 10 pages, 5 figures, REVTeX, to appear in Phys. Rev. A (v2 - minor
changes in discussion of experimental conditions
Comment on "New Experimental Limit for the Electric Dipole Moment of the Neutron"
A new limit for the neutron electric dipole moment has been recently
reported. This new limit is obtained by combining the result from a previous
experiment with the result from a more recent experiment that has much worse
statistical accuracy. We show that the old result has a systematic error
possibly four times greater than the new limit, and under the circumstances,
averaging of the old and new results is statistically invalid. The conclusion
is that it would be more appropriate to quote two independent but mutually
supportive limits as obtained from each experiment separately.Comment: 7 pages, 2 figure
Multi-parameter Entanglement in Quantum Interferometry
The role of multi-parameter entanglement in quantum interference from
collinear type-II spontaneous parametric down-conversion is explored using a
variety of aperture shapes and sizes, in regimes of both ultrafast and
continuous-wave pumping. We have developed and experimentally verified a theory
of down-conversion which considers a quantum state that can be concurrently
entangled in frequency, wavevector, and polarization. In particular, we
demonstrate deviations from the familiar triangular interference dip, such as
asymmetry and peaking. These findings improve our capacity to control the
quantum state produced by spontaneous parametric down-conversion, and should
prove useful to those pursuing the many proposed applications of down-converted
light.Comment: submitted to Physical Review
Contralateral dissociation between neural activity and cerebral blood volume during recurrent acute focal neocortical seizures
OBJECTIVE: Whether epileptic events disrupt normal neurovascular coupling mechanisms locally or remotely is unclear. We sought to investigate neurovascular coupling in an acute model of focal neocortical epilepsy, both within the seizure onset zone and in contralateral homotopic cortex. METHODS: Neurovascular coupling in both ipsilateral and contralateral vibrissal cortices of the urethane-anesthetized rat were examined during recurrent 4-aminopyridine (4-AP, 15 mm, 1 μl) induced focal seizures. Local field potential (LFP) and multiunit spiking activity (MUA) were recorded via two bilaterally implanted 16-channel microelectrodes. Concurrent two-dimensional optical imaging spectroscopy was used to produce spatiotemporal maps of cerebral blood volume (CBV). RESULTS: Recurrent acute seizures in right vibrissal cortex (RVC) produced robust ipsilateral increases in LFP and MUA activity, most prominently in layer 5, that were nonlinearly correlated to local increases in CBV. In contrast, contralateral left vibrissal cortex (LVC) exhibited relatively smaller nonlaminar specific increases in neural activity coupled with a decrease in CBV, suggestive of dissociation between neural and hemodynamic responses. SIGNIFICANCE: These findings provide insights into the impact of epileptic events on the neurovascular unit, and have important implications both for the interpretation of perfusion-based imaging signals in the disorder and understanding the widespread effects of epilepsy. A PowerPoint slide summarizing this article is available for download in the Supporting Information section here
Relationship between p53 mutations and inducible nitric oxide synthase expression in human colorectal cancer.
Slow Light in Doppler Broadened Two level Systems
We show that the propagation of light in a Doppler broadened medium can be
slowed down considerably eventhough such medium exhibits very flat dispersion.
The slowing down is achieved by the application of a saturating counter
propagating beam that produces a hole in the inhomogeneous line shape. In
atomic vapors, we calculate group indices of the order of 10^3. The
calculations include all coherence effects.Comment: 6 pages, 5 figure
Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime
The generation of an entangled coherent state is one of the most important
ingredients of quantum information processing using coherent states. Recently,
numerous schemes to achieve this task have been proposed. In order to generate
travelling-wave entangled coherent states, cross phase modulation, optimized by
optical Kerr effect enhancement in a dense medium in an electromagnetically
induced transparency (EIT) regime, seems to be very promising. In this
scenario, we propose a fully quantized model of a double-EIT scheme recently
proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833
(2002)]: the quantization step is performed adopting a fully Hamiltonian
approach. This allows us to write effective equations of motion for two
interacting quantum fields of light that show how the dynamics of one field
depends on the photon-number operator of the other. The preparation of a
Schr\"odinger cat state, which is a superposition of two distinct coherent
states, is briefly exposed. This is based on non-linear interaction via
double-EIT of two light fields (initially prepared in coherent states) and on a
detection step performed using a beam splitter and two photodetectors.
In order to show the entanglement of a generated entangled coherent state, we
suggest to measure the joint quadrature variance of the field. We show that the
entangled coherent states satisfy the sufficient condition for entanglement
based on quadrature variance measurement. We also show how robust our scheme is
against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section
Neutron EDM from Electric and Chromoelectric Dipole Moments of Quarks
Using QCD sum rules, we calculate the electric dipole moment of the neutron
d_n induced by all CP violating operators up to dimension five. We find that
the chromoelectric dipole moments of quarks \tilde d_i, including that of the
strange quark, provide significant contributions comparable in magnitude to
those induced by the quark electric dipole moments d_i. When the theta term is
removed via the Peccei-Quinn symmetry, the strange quark contribution is also
suppressed and d_n =(1\pm 0.5)[1.1e(\tilde d_d + 0.5\tilde
d_u)+1.4(d_d-0.25d_u)].Comment: 4 pages, revtex, v2: missing overall factor of two reinstate
Electric dipole moments of Hg, Xe, Rn, Ra, Pu, and TlF induced by the nuclear Schiff moment and limits on time-reversal violating interactions
We have calculated the atomic electric dipole moments (EDMs) induced in
^{199}Hg, ^{129}Xe, ^{223}Rn, ^{225}Ra, and ^{239}Pu by their respective
nuclear Schiff moments S. The results are (in units 10^{-17}S(e {fm}^{3})^{-1}e
cm): d(^{199}Hg)=-2.8, d(^{129}Xe)=0.38, d(^{223}Rn)=3.3, d(^{225}Ra)=-8.5,
d(^{239}Pu)=-11. We have also calculated corrections to the parity- and
time-invariance-violating (P,T-odd) spin-axis interaction constant in TlF.
These results are important for the interpretation of atomic and molecular
experiments on EDMs in terms of fundamental P,T-odd parameters.Comment: 16 page
- …
