624 research outputs found

    Normal appearances and dimensions of the foetal cavum septi pellucidi and vergae on in utero MR imaging

    Get PDF
    Purpose The aim of this study is to provide normative data about the appearances and dimensions of the cavum septi pellucidi and vergae (CSPV) on in utero MR (iuMR) imaging in second and third trimester foetuses. Methods Two hundred normal foetuses (from a low-risk pregnancy, with normal ante-natal USS findings and no intracranial abnormality of iuMR) had iuMR imaging between 18 and 37 gestational weeks (gw). The anatomical features on those studies were compared with published atlases of post-mortem foetal brains. The length, width and volume of the CSPV were measured in all foetuses. Results The anatomy of the CSPV and its relationship with the corpus callosum and the fornices on iuMR imaging was comparable with post-mortem data at all gestational ages studied. The length of the CSPV increased throughout pregnancy, whereas the width and volume of CSPV reached a maximum between 29 and 31 gw and then showed a reduction later in pregnancy. Conclusion The iuMR imaging features of the CSPV and its close anatomical relations closely correspond to post-mortem data. The CSPV was patent in all cases but we have shown that closure commences in the midpart of the third trimester and advances in a posterior to anterior direction

    Schizencephaly revisited

    Get PDF
    PURPOSE: In this paper, I will report the range of appearances of schizencephaly in children and fetuses by reviewing a 10-year experience from a single centre and detail classification systems for the different forms of schizencephaly. This will lead to re-assessment of possible aetiological and mechanistic causes of schizencephaly. METHODS: All cases of pediatric and fetal schizencephaly were located on the local database between 2007 and 2016 inclusive. The studies were reviewed for the presence, location and type of schizencephaly, as well as the state of the (cavum) septum pellucidum, the location of the fornices and the presence of other brain abnormalities. RESULTS: The review included 21 children and 11 fetuses with schizencephaly. Schizencephaly (type 1) was found in 9% of children but no fetuses, schizencephaly (type 2) was present in 67% of the pediatric cases and in 45% of fetuses, whilst schizencephaly (type 3) was present in approximately 24% of children and 55% of fetuses. Other brain abnormalities were found in 67% of children and 55% of fetuses. CONCLUSION: I have proposed a new system for classifying schizencephaly that takes into account all definitions of the abnormality in the literature. Using that approach, I have described the appearances and associations of pediatric and fetal cases of schizencephaly from a single centre. Review of the current literature appears to favour an acquired destructive aetiology for most cases of schizencephaly, and I have proposed a mechanism to explain the cortical formation abnormalities found consistently in and around areas of schizencephaly

    Demonstration of Normal and Abnormal Fetal Brains Using 3D Printing from In Utero MR Imaging Data

    Get PDF
    3D printing is a new manufacturing technology that produces high-fidelity models of complex structures from 3D computer-aided design data. Radiology has been particularly quick to embrace the new technology because of the wide access to 3D datasets. Models have been used extensively to assist orthopedic, neurosurgical, and maxillofacial surgical planning. In this report, we describe methods used for 3D printing of the fetal brain by using data from in utero MR imaging

    Feasibility of human lung ventilation imaging using highly polarized naturally abundant xenon and optimized three-dimensional steady-state free precession

    Get PDF
    Purpose To demonstrate the potential for high quality MRI of pulmonary ventilation using naturally abundant xenon (NAXe) gas. Methods MRI was performed at 1.5 Tesla (T) and 3 T on one healthy smoker and two healthy never-smokers. 129Xe gas was polarized to ∼25% using an in-house spin-exchange optical pumping polarizer fitted with a laser diode array with integrated volume holographic grating and optical train system. Volunteers inhaled 1 L of NAXe for an 8 to 15 s breathhold while MR images were acquired with full-lung coverage using a three-dimensional steady-state free precession sequence, optimized for maximum signal-to-noise ratio (SNR) at a given spatial resolution. For the purpose of image quality comparison, the MR acquisition was repeated at 1.5 T with 400 mL enriched xenon and 200 mL 3He. Results All NAXe lung images were of high quality, with mean SNRs of 25–40 (voxel 4.2 × 4.2 × 8/10 mm3) and ∼30% improvement at 3 T versus 1.5 T. The high SNR permitted identification of minor ventilation defects in the healthy smoker's lungs. NAXe images were of comparable SNR to those obtained with enriched xenon and 3He. Conclusion Optimization of MR pulse sequences and advances in polarization technology have facilitated high quality pulmonary ventilation imaging with inexpensive NAXe gas. Magn Reson Med 74:346–352, 2015

    High resolution spectroscopy and chemical shift imaging of hyperpolarized 129 Xe dissolved in the human brain in vivo at 1.5 tesla

    Get PDF
    Purpose Upon inhalation, xenon diffuses into the bloodstream and is transported to the brain, where it dissolves in various compartments of the brain. Although up to five chemically distinct peaks have been previously observed in 129Xe rat head spectra, to date only three peaks have been reported in the human head. This study demonstrates high resolution spectroscopy and chemical shift imaging (CSI) of 129Xe dissolved in the human head at 1.5 Tesla. Methods A 129Xe radiofrequency coil was built in-house and 129Xe gas was polarized using spin-exchange optical pumping. Following the inhalation of 129Xe gas, NMR spectroscopy was performed with spectral resolution of 0.033 ppm. Two-dimensional CSI in all three anatomical planes was performed with spectral resolution of 2.1 ppm and voxel size 20 mm × 20 mm. Results Spectra of hyperpolarized 129Xe dissolved in the human head showed five distinct peaks at 188 ppm, 192 ppm, 196 ppm, 200 ppm, and 217 ppm. Assignment of these peaks was consistent with earlier studies. Conclusion High resolution spectroscopy and CSI of hyperpolarized 129Xe dissolved in the human head has been demonstrated. For the first time, five distinct NMR peaks have been observed in 129Xe spectra from the human head in vivo

    ATP synthesis driven by a pH gradient imposed across the cell membranes of lipoic acid and unsaturated fatty acid auxotrophs of escherichia coli

    Get PDF
    L'edifici té el seu origen a principis del segle XIX.Primer pla, contrapicat, d'un edifici de planta baixa i quatre plantes pis. S'estructura segons eixos verticals amb tres obertures per planta que s'organitzen com a balconades en els dos primers pisos i com a balcons en els restants

    Entropy Crisis, Ideal Glass Transition and Polymer Melting: Exact Solution on a Husimi Cactus

    Full text link
    We introduce an extension of the lattice model of melting of semiflexible polymers originally proposed by Flory. Along with a bending penalty, present in the original model and involving three sites of the lattice, we introduce an interaction energy that corresponds to the presence of a pair of parallel bonds and a second interaction energy associated with the presence of a hairpin turn. Both these new terms represent four-site interactions. The model is solved exactly on a Husimi cactus, which approximates a square lattice. We study the phase diagram of the system as a function of the energies. For a proper choice of the interaction energies, the model exhibits a first-order melting transition between a liquid and a crystalline phase. The continuation of the liquid phase below this temperature gives rise to a supercooled liquid, which turns continuously into a new low-temperature phase, called metastable liquid. This liquid-liquid transition seems to have some features that are characteristic of the critical transition predicted by the mode-coupling theory.Comment: To be published in Physical Review E, 68 (2) (2003

    Sex differences in fetal intracranial volumes assessed by in utero MR imaging

    Get PDF
    Background The primary aim of the study is to test the null hypothesis that there are no statistically significant differences in intracranial volumes between male and female fetuses. Furthermore, we have studied the symmetry of the cerebral hemispheres in the cohort of low-risk fetuses. Methods 200 normal fetuses between 18 and 37 gestational weeks (gw) were included in the cohort and all had in utero MR, consisting of routine and 3D-volume imaging. The surfaces of the cerebral ventricles, brain and internal table of the skull were outlined manually and volume measurements were obtained of ventricles (VV), brain parenchyma (BPV), extraaxial CSF spaces (EAV) and the total intracranial volume (TICV). The changes in those values were studied over the gestational range, along with potential gender differences and asymmetries of the cerebral hemispheres. Results BPV and VV increased steadily from 18 to 37 gestational weeks, and as a result TICV also increased steadily over that period. TICV and BPV increased at a statistically significantly greater rate in male relative to female fetuses after 24gw. The greater VV in male fetuses was apparent earlier, but the rate of increase was similar for male and female fetuses. There was no difference between the genders in the left and right hemispherical volumes, and they remained symmetrical over the age range measured. Conclusions We have described the growth of the major intracranial compartments in fetuses between 18 and 37gw. We have shown a number of statistically different features between male and female fetuses, but we have not detected any asymmetry in volumes of the fetal cerebral hemispheres

    Should we perform in utero MRI on a fetus at increased risk of a brain abnormality if ultrasonography is normal or shows non-specific findings?

    Get PDF
    There are a number of reasons why a pregnant woman might be considered to have an increased risk of carrying a fetus with a brain abnormality, but they fall broadly into two groups. First, there may be a relevant family history usually, but not always, when a fetus/child from a previous pregnancy has a developmental brain abnormality and a clinical geneticist judges that there is a risk of recurrence. Second, there may be findings in their current pregnancy that increases the risk of the fetus either having a developmental brain abnormality or accruing acquired brain pathology. Antenatal ultrasonography remains the mainstay of fetal screening and anomaly scanning, but there is now persuasive evidence that in utero magnetic resonance imaging should have an important supporting role. This is important, as more accurate and more certain diagnoses are central to providing parents with accurate information about the likely clinical outcome. In pregnancies at increased risk of brain abnormalities, it is also important to provide the best quality information that the fetal brain is normal to provide reassurance to parents. In this paper, we review the proposition that in utero magnetic resonance imaging should be used in pregnancies at increased risk of brain abnormalities, even if the consultant-led ultrasound examination is normal or showed non-specific findings only

    A preliminary study of brain macrovascular reactivity in impaired glucose tolerance and type-2 diabetes: Quantitative internal carotid artery blood flow using magnetic resonance phase contrast angiography.

    Get PDF
    OBJECTIVE: The aims of this study were (1) to examine cerebrovascular autoregulation in subjects with impaired glucose tolerance and type 2 diabetes and (2) to clarify whether cardiovascular autonomic nerve function is associated with abnormal cerebrovascular autoregulation. RESEARCH DESIGN AND METHODS: Totally, 46 subjects were recruited (12 = impaired glucose tolerance, 17 = type 2 diabetes and 17 = healthy volunteers). Arterial blood flow was assessed within the internal carotid artery at baseline and 20 min after intravenous pharmacological stress (1 g acetazolamide), using quantitative magnetic resonance phase-contrast angiography. Internal carotid artery vascular reactivity and pulsatility index was determined. All subjects underwent baroreceptor reflex sensitivity assessment. RESULTS: Subjects with impaired glucose tolerance and type 2 diabetes had significantly lower internal carotid artery vascular reactivity [40.2%(19.8) and 41.5%(18.7)], respectively, compared with healthy volunteers [57.0%(14.2); analysis of variance, p = 0.02]. There was no significant difference in internal carotid artery vascular reactivity between type 2 diabetes and impaired glucose tolerance groups (p = 0.84). There was a significant positive correlation between baroreceptor reflex sensitivity (low frequency:high frequency) with cardiac rhythm variability (ρ = 0.47, p = 0.04) and PI (ρ = 0.46, p = 0.04). CONCLUSION: We have demonstrated significant cerebrovascular haemodynamic abnormalities in subjects with type 2 diabetes and impaired glucose tolerance. This was associated with greater sympathovagal imbalance. This may provide an important mechanistic explanation for increased risk of cerebrovascular disease in diabetes. It also highlights that these abnormalities may already be present in prediabetes
    corecore