549 research outputs found

    Variance fluctuations in nonstationary time series: a comparative study of music genres

    Full text link
    An important problem in physics concerns the analysis of audio time series generated by transduced acoustic phenomena. Here, we develop a new method to quantify the scaling properties of the local variance of nonstationary time series. We apply this technique to analyze audio signals obtained from selected genres of music. We find quantitative differences in the correlation properties of high art music, popular music, and dance music. We discuss the relevance of these objective findings in relation to the subjective experience of music.Comment: 13 pages, 4 fig

    Covariant QCD Modeling of Light Meson Physics

    Get PDF
    We summarize recent progress in soft QCD modeling based on the set of Dyson--Schwinger equations truncated to ladder-rainbow level. This covariant approach to hadron physics accommodates quark confinement and implements the QCD one-loop renormalization group behavior. We compare the dressed quark propagator, pseudoscalar and vector meson masses as a function of quark mass, and the rho -> pi pi coupling to recent lattice-QCD data. The error in the Gell-Mann--Oakes--Renner relation with increasing quark mass is quantified by comparison to the exact pseudoscalar mass relation as evaluated within the ladder-rainbow Dyson-Schwinger model.Comment: Presented at the International School on Nuclear Physics, 24th course: Quarks in Nuclei, Erice, Sicily, September 2002; to be published in Prog. Part. Nucl. Phys.; 6 pages, 6 fig

    Diffeomorphism, kappa transformations and the theory of non-linear realisations

    Get PDF
    We will show how the theory of non-linear realisations can be used to naturally incorporate world line diffeomorphisms and kappa transformations for the point particle and superpoint particle respectively. Similar results also hold for a general p-brane and super p-brane, however, we must in these cases include an additional Lorentz transformation.Comment: 19pages, no figure. References are added and typos are correcte

    The Quark-Photon Vertex and the Pion Charge Radius

    Full text link
    The rainbow truncation of the quark Dyson-Schwinger equation is combined with the ladder Bethe-Salpeter equation for the dressed quark-photon vertex to study the low-momentum behavior of the pion electromagnetic form factor. With model gluon parameters previously fixed by the pion mass and decay constant, the pion charge radius rπr_\pi is found to be in excellent agreement with the data. When the often-used Ball-Chiu Ansatz is used to construct the quark-photon vertex directly from the quark propagator, less than half of rπ2r_\pi^2 is generated. The remainder of rπ2r^2_\pi is seen to be attributable to the presence of the ρ\rho-pole in the solution of the ladder Bethe-Salpeter equation.Comment: 21 pages, 9 figure

    Quasi-Black Holes from Extremal Charged Dust

    Full text link
    One can construct families of static solutions that can be viewed as interpolating between nonsingular spacetimes and those containing black holes. Although everywhere nonsingular, these solutions come arbitrarily close to having a horizon. To an observer in the exterior region, it becomes increasingly difficulty to distinguish these from a true black hole as the critical limiting solution is approached. In this paper we use the Majumdar-Papapetrou formalism to construct such quasi-black hole solutions from extremal charged dust. We study the gravitational properties of these solutions, comparing them with the the quasi-black hole solutions based on magnetic monopoles. As in the latter case, we find that solutions can be constructed with or without hair.Comment: 18 page

    QCD modeling of hadron physics

    Full text link
    We review recent developments in the understanding of meson properties as solutions of the Bethe-Salpeter equation in rainbow-ladder truncation. Included are recent results for the pseudoscalar and vector meson masses and leptonic decay constants, ranging from pions up to c\bar{c} bound states; extrapolation to b\bar{b} states is explored. We also present a new and improved calculation of F_\pi(Q^2) and an analysis of the \pi\gamma\gamma transition form factor for both \pi(140) and \pi(1330). Lattice-QCD results for propagators and the quark-gluon vertex are analyzed, and the effects of quark-gluon vertex dressing and the three-gluon coupling upon meson masses are considered.Comment: 17 pages, 19 postscript figures, contribution to the proceedings of LC05, Cairns, Australia, July 200

    Mesons as qbar-q Bound States from Euclidean 2-Point Correlators in the Bethe-Salpeter Approach

    Full text link
    We investigate the 2-point correlation function for the vector current. The gluons provide dressings for both the quark self energy as well as the vector vertex function, which are described consistently by the rainbow Dyson-Schwinger equation and the inhomogeneous ladder Bethe-Salpeter equation. The form of the gluon propagator at low momenta is modeled by a 2-parameter ansatz fitting the weak pion decay constant. The quarks are confined in the sense that the quark propagator does not have a pole at timelike momenta. We determine the ground state mass in the vector channel from the Euclidean time Fourier transform of the correlator, which has an exponential falloff at large times. The ground state mass lies around 590 MeV and is almost independent of the model form for the gluon propagator. This method allows us to stay in Euclidean space and to avoid analytic continuation of the quark or gluon propagators into the timelike region.Comment: 21 pages (REVTEX), 8 Postscript figure

    Topological Superfluid in one-dimensional Ultracold Atomic System with Spin-Orbit Coupling

    Full text link
    We propose a one-dimensional Hamiltonian H1DH_{1D} which supports Majorana fermions when dx2−y2d_{x^{2}-y^{2}}-wave superfluid appears in the ultracold atomic system and obtain the phase-separation diagrams both for the time-reversal-invariant case and time-reversal-symmetry-breaking case. From the phase-separation diagrams, we find that the single Majorana fermions exist in the topological superfluid region, and we can reach this region by tuning the chemical potential ÎŒ\mu and spin-orbit coupling αR\alpha_{R}. Importantly, the spin-orbit coupling has realized in ultracold atoms by the recent experimental achievement of synthetic gauge field, therefore, our one-dimensional ultra-cold atomic system described by H1DH_{1D} is a promising platform to find the mysterious Majorana fermions.Comment: 5 papers, 2 figure

    A stochastic model for heart rate fluctuations

    Full text link
    Normal human heart rate shows complex fluctuations in time, which is natural, since heart rate is controlled by a large number of different feedback control loops. These unpredictable fluctuations have been shown to display fractal dynamics, long-term correlations, and 1/f noise. These characterizations are statistical and they have been widely studied and used, but much less is known about the detailed time evolution (dynamics) of the heart rate control mechanism. Here we show that a simple one-dimensional Langevin-type stochastic difference equation can accurately model the heart rate fluctuations in a time scale from minutes to hours. The model consists of a deterministic nonlinear part and a stochastic part typical to Gaussian noise, and both parts can be directly determined from the measured heart rate data. Studies of 27 healthy subjects reveal that in most cases the deterministic part has a form typically seen in bistable systems: there are two stable fixed points and one unstable one.Comment: 8 pages in PDF, Revtex style. Added more dat
    • 

    corecore