40,185 research outputs found

    Two-dimensional ultrasound receive array using an angle-tuned Fabry-Perot polymer film sensor for transducer field characterization and transmission ultrasound imaging

    Get PDF
    A 2-D optical ultrasound receive array has been investigated. The transduction mechanism is based upon the detection of acoustically induced changes in the optical thickness of a thin polymer film acting as a Fabry-Perot sensing interferometer (FPI). By illuminating the sensor with a large-area laser beam and mechanically scanning a photodiode across the reflected output beam, while using a novel angle-tuned phase bias control system to optimally set the FPI working point, a notional 2-D ultrasound array was synthesized. To demonstrate the concept, 1-D and 2-D ultrasound field distributions produced by planar 3.5-MHz and focused 5-MHz PZT ultrasound transducers were mapped. The system was also evaluated by performing transmission ultrasound imaging of a spatially calibrated target. The "array" aperture, defined by the dimensions of the incident optical field, was elliptical, of dimensions 16 /spl times/ 12 mm and spatially sampled in steps of 0.1 mm or 0.2 mm. Element sizes, defined by the photodiode aperture, of 0.8, 0.4, and 0.2 mm were variously used for these experiments. Two types of sensor were evaluated. One was a discrete 75-/spl mu/m-thick polyethylene terephthalate FPI bonded to a polymer backing stub which had a wideband peak noise-equivalent pressure of 6.5 kPa and an acoustic bandwidth 12 MHz. The other was a 40-/spl mu/m Parylene film FPI which was directly vacuum-deposited onto a glass backing stub and had an NEP of 8 kPa and an acoustic bandwidth of 17.5 MHz. It is considered that this approach offers an alternative to piezoelectric ultrasound arrays for transducer field characterization, transmission medical and industrial ultrasound imaging, biomedical photoacoustic imaging, and ultrasonic nondestructive testing

    The generalized minimum spanning tree polytope and related polytopes

    Get PDF
    The Generalized Minimum Spanning Tree problem denoted by GMST is a variant of the classical Minimum Spanning Tree problem in which nodes are partitioned into clusters and the problem calls for a minimum cost tree spanning at least one node from each cluster. A different version of the problem, called E-GMST arises when exactly one node from each cluster has to be visited. Both GMST problem and E-GMST problem are NP-hard problems. In this paper, we model GMST problem and E-GMST problem as integer linear programs and study the facial structure of the corresponding polytopes

    Some remarks on modelling the PDF of the concentration of a dispersing scalar in turbulence

    Get PDF
    The paper deals with the probability density function (PDF) of the concentration of a scalar within a turbulent flow. Following some comments about the overall structure of the PDF, and its approach to a limit at large times, attention focusses on the so-called small scale mixing term in the evolution equation for the PDF. This represents the effect of molecular diffusion in reducing concentration uctuations, eventually to zero. Arguments are presented which suggest that this quantity could, in certain circumstances, depend inversely upon the PDF, and a particular example of this leads to a new closure hypothesis. Consequences of this, especially similarity solutions, are explored for the case when the concentration field is statistically homogeneous

    A comparative study of consumption rates and preference for some species of aquatic plants by Tilapia rendalli

    Get PDF
    The daily consumption rates and preference of juvenile Tilapia rendalli for some macrophytes, Ceratophyllum demersum, Lagarosiphon major, Najas pectinatas and Valisneria aethiopica were determined. Fish were offered single macrophyte diets to determine daily consumption and a mixture of the 4 macrophytes in equal quantities to determine selection. Consumption rates were 821.50 mg, 829.05 mg, 940.00 mg and 2293.53 mg per fish per day, respectively. The differences in consumption rates were significant. Preference was shown for V.aethiopica, whilst C.demersum was least selected. Fish fed on single species lost weight whereas those fed on a variety of macrophytes gained in weight

    Influence of reaction products on the selective oxidation of ethene

    Get PDF
    The kinetics of the selective oxidation of ethene in air over an industrial silver on ¿-alumina catalyst were studied. Special attention was paid to the influence of the reaction products on the reaction rates of epoxidation and complete combustion. Kinetic data were obtained in two different types of internal recycle reactor and in a cooled tubular reactor, and were fitted separately to several reaction rate expressions based on different kinetic models. A Langmuir-Hinshelwood mechanism, in which adsorbed ethene reacts with adsorbed molecular oxygen, was chosen as the best kinetic model. The reaction products compete for adsorption on the active sites and reduce the rates of both reactions. Carbon dioxide enhances the selectivity towards ethene oxide, whereas water has almost no influence on the selectivity. The fitting of the three individual data sets obtained in the three reactors results in accurate, but different, reaction rate expressions, whereas the fitting of the three data sets simultaneously results in less accurate reaction rate expressions. The systematic deviations found may be explained, to some extent, by differences in the operating regimes in each reactor. The main reason for the deviations is probably the different catalyst activities in the three reactors caused by poisoning. The effect of the addition of products to the feed on the behaviour of the cooled tubular reactor can be described reasonably well by a mathematical model in which the kinetic equations obtained in the laboratory reactors are incorporated. The results of these simulations are sensitive to the kinetics used

    A novel reactor for determination of kinetics for solid catalyzed gas reactions

    Get PDF
    A novel perfectly mixed laboratory reactor for determining kinetics of heterogeneously catalyzed gas-phase reactions has been developed. Perfect mixing is achieved by circulating the gas in the reactor using an axial flow impeller in a well streamlined enclosure. Pellets are fixed in a rectangular opening in the blades of the impeller. They rotate with the impeller, thus realizing high particle velocities in the reactor. Interparticle mass transfer was studied experimentally by vaporization of naphthalene pellets. The mass-transfer coefficient in the novel reactor was found to depend on the velocity of a particle in the reactor. Mass-transfer coefficients in an internal recycle reactor at equal impeller tip speeds are 4-6 times lower than those in the novel reactor, and conditions can be chosen easily where at higher rotational speeds the mass- and heat-transfer rates are 8-10 times higher than in classical recycle reactors. The recycle flow rate in a recycle reactor was found to depend strongly on the resistance to flow caused by the catalyst bed itself. The novel reactor was tested under reacting conditions using the hydrogenation of ethene

    Proper seed storage (Liveseed Practice abstract)

    Get PDF
    What causes seed ageing? Seed ageing is caused by oxidation of the cell membranes, mitochondria, DNA, RNA and proteins in the seeds. This oxidation is stimulated by four factors: seed moisture level, temperature, oxygen and time. The main factors stimulating this ageing are moisture and oxygen. How to reduce ageing Keep sealed commercial seed packages closed until use, to avoid moisture uptake from the air. Never store an open package in a cold place like a refrigerator, were the humidity is high and the seeds will absorb moisture. If not all seeds are used, store the remainder in a dry environment. For this we developed an easy system with a ‘seed drying and storage box’ (Fig 2). The principle is an airtight transparent box. In the box is a bag with silica gel and a relative humidity (RH) meter. The optimal RH is between 20 and 40%. Home produced seeds can also be dried in the box. If the RH surpasses the 40%, the silica gel needs to be regenerated in an oven at 100 °C. The dried silica gel can be cooled down in a closed clean jam jar or alike. It is possible to store the airtight box with seeds in a cooler place, to reduce ageing further. For larger amount of seeds the box could be replaced by a large vacuum bag, as available for storage of clothes
    corecore