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Some remarks on modelling the PDF of the
concentration of a dispersing scalar in turbulence

P. C. CHATWIN

Department of Applied Mathematics, University of Sheffield, Hicks Building, Sheffield S3 7RH, UK

(Received 31 August 2001)

The paper deals with the probability density function (PDF) of the concentration of a scalar

within a turbulent flow. Following some comments about the overall structure of the PDF,

and its approach to a limit at large times, attention focusses on the so-called small scale

mixing term in the evolution equation for the PDF. This represents the effect of molecular

diffusion in reducing concentration fluctuations, eventually to zero. Arguments are presented

which suggest that this quantity could, in certain circumstances, depend inversely upon the

PDF, and a particular example of this leads to a new closure hypothesis. Consequences of

this, especially similarity solutions, are explored for the case when the concentration field is

statistically homogeneous.

1 Introduction

One of the most important features of turbulent flows is how they disperse scalars (e.g.

a dissolved dye, an aerosol in the atmosphere, heat). The concentration of a dispersing

scalar (or temperature in the case of heat) is inevitably a random function of position x

and time t, but a random function whose statistical properties are determined by physics.

Historically research tended to focus on one or two of the simplest statistical properties,

especially the (ensemble) mean and variance of the concentration. But, though important,

these two properties are not able, in themselves, to provide an adequate (either physical

or practical) description of the random concentration field. Thus, there has naturally been

increasing focus on other statistical properties including the Probability Density Function

(PDF) of concentration.

It has been recognised for many years [23] that a proper description of turbulent

combustion requires consideration of PDFs. More recently, but belatedly, there has

developed acceptance (now widespread) that PDFs are needed to quantify hazards, such

as toxicity, flammability and malodour, associated with gases dispersing in the atmosphere.

Measurements of the PDF of increasing reliability are now being obtained not only in

the laboratory but also in the field [21, 16]. Pioneering theoretical work on the PDF

is described by Borghi [2], Dopazo [9], Kuznetsov & Sabel’nikov [15], Pope [23, 24]

and Sullivan & Ye [26]. However, theoretical research is, of course, hampered by the

ubiquitous closure problem and while this may be circumvented one day using DNS

(Direct Numerical Simulation), estimates in Mole et al. [18] suggest that this will not

be feasible for most realistic flows and geometries for many years. It is reasonable to

claim that theoretical research on the PDF of a dispersing scalar is a relatively new
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topic with inadequate understanding, and that there is still considerable scope for simple

mathematical models based on good physical insight. The present paper is a contribution

with this philosophy.

2 The evolution equation for the PDF

Consider a dispersing scalar in a turbulent flow, subject only to advection and molecular

diffusion. More precisely, it will be supposed throughout that the concentration C(x, t) of

the dispersing scalar (or temperature in the case of heat) obeys the advection-diffusion

equation

∂C

∂t
+ U.∇C = κ∇2C, (2.1)

where U=U(x,t) is the random turbulent velocity field, satisfying mass conservation and

the Navier–Stokes equations, and the positive constant κ is the molecular diffusivity. The

randomness of U enforces randomness of C. The PDF of C is denoted by pC(q; x, t) where

(except perhaps at isolated points):

pC(q; x, t) =
d

dq

[

prob {C(x, t) 6 q}
]

; (2.2)

alternatively,

pC(q; x, t) δq ≈ prob {q 6 C(x, t) < q + δq} , (2.3)

where δq is positive and small. Since pC is a PDF, it follows that

∫ ∞

0

pC(q; x, t)dq = 1, (2.4)

and the (ensemble) mean concentration E {C}, where E {·} denotes the expected value, is

defined by

E {C} =

∫ ∞

0

q pC(q; x, t)dq, (2.5)

with analogous equations for the variance and higher moments – see Mole et al. [18].

The PDF pC(q; x, t) obeys an evolution equation determined from equation (2.1). This

equation can be written in many equivalent forms, of which the most convenient for

present purposes is

∂pC

∂t
+ ∇.

[

pC E {U | C = q}
]

= κ∇2pC − κ
∂

2

∂q2

[

pC E
{

(∇C)2 | C = q
}]

. (2.6)

In equation (2.6), E {A|B} denotes the expected value of event A conditional upon the

occurrence of the event B. The second terms on each side of equation (2.6) are not

closed, i.e. they are not expressible in terms of pC and the independent variables. Thus,

for example, the second term on the right-hand side of equation (2.6), called the Small

Scale Mixing Term (SSMT) by Pope [24], depends also upon the joint PDF of C and ∇C .

Much of the present paper deals with the SSMT.
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3 Some limiting properties of the PDF

In this paper, it is useful to fix attention on a particular type of situation. Suppose that,

at t = 0, a finite quantity M of scalar of uniform concentration Cm is released into a

turbulent flow in which there is no scalar. This statistically unsteady dispersion situation

is a reasonable approximation, at worst, to many real accidents, and was investigated

experimentally by Hall et al. [11].

Thus there are regions Σ1 and Σ2, with volumes V1 and V2 respectively, where the union

of Σ1 and Σ2 is the total region Σ, with volume V , available for dispersion, such that

C(x, 0) =

{

Cm (x ⊂ Σ1),

0 (x ⊂ Σ2).
(3.1)

Note that V and V2 may be infinite. Since subsequent dispersion is governed by equa-

tion (2.1), it follows from a well-known property of this equation that, for all times t > 0

and for all finite x ⊂ Σ:

C(x, t) < Cm and C(x, t) > 0. (3.2)

Thus there are concentrations q1 = q1(x, t) and q2 = q2(x, t), with q1 > 0 and q2 < Cm,

such that

pC(x, t) = 0 for q < q1 , q > q2. (3.3)

It merits emphasis that q1 and q2 are determined by the governing equations and by the

choice of ensemble.

Equation (3.2) and its consequence, equation (3.3), arise because equation (2.1) is

parabolic, thereby allowing, in effect, some pollutant molecules to have infinite velocities.

This is obviously wrong and has led some authors to consider replacing (2.1) by, for

example, a generalized telegraph equation (see Monin & Yaglom [19, pp. 676–693]).

Nevertheless there is no experimental evidence that (2.1) does not describe turbulent

dispersion adequately for all practical purposes, and (3.2) and (3.3) then have to be

accepted.

Estimates of the a priori unknown quantities q1 and q2, and the behaviour of pC near

q1 and q2, can in principle be made from data using the statistical theory of extremes –

see Mole et al. [17] and Munro et al. [20] – but there is considerable uncertainty in such

estimates.

The constraints in (3.2) and (3.3) have often been overlooked, particularly that q2 is

finite. The latter constraint rules out the power law decay predicted by Sinai & Yakhot

[25], the clipped Normal fitted by Mylne & Mason [21] and the clipped gamma derived

by Yee & Chan [32], as well as many others.

For the case when V is finite, the SSMT ensures that the concentration will tend to the

uniform value M/V as t → ∞, i.e.

pC(q; x, t) → δ

(

q − M

V

)

as t → ∞. (3.4)

In the limit given by (3.4)

µ = E{C} =
M

V
; σ2 = Var{C} = E{(C − µ)2} = 0, (3.5)
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where Var{.} denotes the variance and σ is the standard deviation of C . Thus

σ

µ
→ 0 as t → ∞. (3.6)

In view of controversy about the limiting value of σ/µ in other circumstances (e.g. see

Thomson [29]) it might be worth adding as an aside that whenever it can be deduced

that pC → δ(q − q0) with q0 > 0, σ/µ must tend to zero. One such example occurs a long

way downwind of a steady source in a windtunnel or pipe of constant cross-section; in

this case the limit is approached as downwind distance, rather than time, increases. But in

many other cases, such as some pollution plumes, lateral spreading is unconfined so that

V in (3.4) is effectively infinite. Then pC → δ(q) so both µ and σ in (3.5) approach zero

and (3.6) no longer necessarily holds.

4 The basis of a new closure hypothesis for the SSMT

For the situation described at the beginning of the previous section, the initial structure

of pC is given by

pC(q; x, 0) = π(x)δ(q − Cm) + [1 − π(x)]δ(q), (4.1)

where π(x) is determined by the selected ensemble. Two examples out of many possibilities

are:

(a) The region Σ1 has fixed shape and location. Then

π(x) =

{

1 (x ⊂ Σ1),

0 (x ⊂ Σ2).
(4.2)

Recall that Σ2 is the complement of Σ1 within the total region Σ.

(b) The region Σ is finite with volume V , but the scalar-containing region Σ1 of volume

V1 has random shape and location, with the randomness such that

π(x) =
V1

V
for all x ⊂ Σ. (4.3)

The condition (4.2) applies to the experiments of Hall et al. [11].

By contrast, when (4.3) holds, pC(q; x, 0) is homogeneous, i.e. independent of x. In

common with many other studies (e.g. Eswaran & Pope [10] and Jaberi et al. [12]), this

paper considers the simplest possible circumstances when pC(q; x, t) is homogeneous for

all t. Then equation (2.6) reduces to

∂pC

∂t
= −κ

∂
2gC

∂q2
, (4.4)

where

gC = pC E
{

(∇C)2 | C = q
}

. (4.5)

By this choice it is hoped to gain some understanding. But, since homogeneous turbu-

lence can never be exactly realised in practice, the results can, at best, only describe

approximately the local behaviour of pC , i.e. on length scales small compared with those

characteristic of changes in the statistical properties of the velocity field. This could occur

in the interiors of pollution plumes downwind of industrial chimney stacks. Alternatively,
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(4.4) and (4.5) could model pC within a box which is continually and randomly stirred

with initial conditions given by (4.1) and (4.3).

In summary, therefore, a major problem is to study the way in which pC evolves

via (4.4) and (4.5) from the double-delta-function distribution in (4.1) and (4.3) to the

single-delta-function distribution in (3.4).

Two distinct types of theoretical method have dominated previous work on this problem.

The first, also used in the present paper, is to express the SSMT on the right-hand side

of (4.4) in terms, undoubtedly approximate, of pC; this is known as a ‘closure hypothesis’

and has a long history in turbulence, and turbulent dispersion, research beginning with

the use of eddy viscosities and diffusivities. Those closure hypotheses that have been

applied to the SSMT are discussed by many authors (e.g. Pope [24, pp. 158–163], Borghi

[2, pp. 259–261], Kuznetsov & Sabel’nikov [15, pp. 51–53] and Dopazo [9, pp. 409–421].

A popular alternative calculation method for predicting pC is DNS, i.e. equation (2.1)

is solved numerically many times sufficient both to (a) include an adequate sample of

the possible velocity fields, although the ways in which these are modelled vary greatly,

and (b) allow reasonably robust estimations of pC . Papers using DNS include Eswaran

& Pope [10], Jaberi et al. [12] and Zimmerman [34]. Use of a closure hypothesis has the

great potential advantage over DNS of speed of calculation, but it must be physically

reasonable and, for practical use, of known accuracy in specified circumstances.

In laboratory experiments, Tavoularis & Corrsin [27] observed that pC was approxi-

mately Gaussian (i.e. a Normal distribution) when there was a constant and non-zero

spatial gradient of the mean concentration µ. Pope [24, p. 157] cites this in claiming that

an “aim of the modelling is, therefore, to produce Gaussian PDFs whose first and second

moments evolve correctly” and later (loc. cit., p. 159) writes “A satisfactory modelled

PDF equation should admit this Gaussian PDF as a solution”. In introducing their DNS

experiments with spatially homogeneous statistics, Eswaran & Pope [10, p. 515] state that

“It is generally assumed that the scalar PDF, starting from a double-delta distribution,

evolves towards a Gaussian”, and this claim is repeated by other authors, e.g. Dopazo

[9, p. 410]. The following comments may be made immediately:

• The experimental conditions used by Tavoularis & Corrsin [27] are not consistent with

an initial double-delta-function distribution.

• A Gaussian PDF, i.e. one for which

pC =
1

σ
√

2π
exp

{

− (q − µ)2

2σ2

}

(−∞ < q < ∞), (4.6)

where µ = µ(t), σ = σ(t), can at best be an approximation, and an unphysical one,

since it does not satisfy (3.3) above.

• Measured PDFs in field experiments with an initial double-delta-function distribution

are very frequently of the strongly non-Gaussian form typified by Figure 1. (Further

examples can be found in Lewis and Chatwin [16] and many other papers.) Character-

istic features include a pronounced maximum of pC for a low value of q1 and a long

tail which, by (3.3), terminates at a finite value of q.

1 Because of binning in data acquisition, it is usually impossible to distinguish this value of q

from zero, although (3.3) shows that it must be strictly positive.
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Figure 1. Measured values of pC , denoted by p̂C , against q from field experiments conducted by
Risø National Laboratory, Denmark (BORRIS campaign 1994).

Some evidence for the statement by Eswaran & Pope [10], quoted above, may be found

in their paper. Figures 14, 15 and 16 of that paper show that as time evolves the two initial

peaks of pC (used in the simulation to model the initial double-delta-function) shrink in

magnitude with a concomitant rise in the values of pC between the peaks. Eventually a

single peak, with growing magnitude, emerges. While the final shapes of the graphs of

pC against q after four eddy-turnover times appear qualitatively similar to Gaussians,

Eswaran & Pope [10, pp. 517–518] note that the flatness (i.e. kurtosis) shows “little sign

of levelling off (let alone returning to 3)”, refer to the “lack of Gaussianity of pC”, and

state “Thus Figs. 20 and 24 consistently indicate the lack of Gaussianity in pC at the

end of the simulations”. However a single simulation for the extended period of twelve

eddy-turnover times does suggest that the skewness and kurtosis are approaching the

Gaussian values although there is non-negligible statistical variability.

Subsequent to the work of Eswaran & Pope [10], other workers have indeed noted that

a Gaussian form of pC “is only one of many possible outcomes” (Jaberi et al. [12, p. 244]).

Later (loc. cit., p. 277) the same authors state that “The primary observation made here

is to verify that the long-time PDF of a passive scalar in homogeneous turbulent flows

is not necessarily Gaussian (or of any particular form). . . ”. Using a variety of DNS

techniques, Jaberi et al. [12] obtain PDFs, some of which are Gaussian and some of

which are exponential (the latter, like (4.6), can only be approximate since it too does not

satisfy (3.3) above). Kimura and Kraichnan [13] also obtain non-Gaussian PDFs using

both DNS and an idealized analytical model.

Another interesting difference between the work of Eswaran and Pope [10] and that of

Jaberi et al. [12] is that the former note that “the evolution of PDF shapes . . . appears

to be independent of the initial conditions” (Eswaran and Pope [10, p. 515]) whereas the

latter state “that both Gaussian and exponential scalar PDFs emerge depending on the
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parameters of the simulations and the initial conditions of the scalar field” (Jaberi et al.

[12, p. 241).

The last quote indicates the potential importance of the precise DNS technique used.

It also merits emphasis that in the DNS methods used in the papers referred to, in

Zimmerman [34], and in many others, periodic boundary conditions were imposed and

the resulting PDFs may, at least in part, be influenced by this strong and unreal constraint.

Tsinober [31, p. 423] notes that because of periodic boundary conditions: “ . . . the

correlation coefficient between two values of any quantity at . . . opposing boundaries,

i.e. the points separated at maximal distance in the flow domain, is precisely equal to

unity . . . . On the contrary, in any real flow the correlation coefficient becomes very small

for points separated by a distance of the order of, and larger than, the integral scale of

turbulent flow.”

In summary, the present modelling situation is rather confused, with different numerical

techniques giving results that differ strongly from one another in some fundamental

respects; nor are they generally consistent with experimental measurements or basic

theoretical results like (3.3).

The remainder of the present paper is based on a new idea for closing (4.4). It is

claimed merely that this idea may provide fresh insight, not that it will resolve decisively

the problems indicated in the previous paragraph.

First, suppose that the initial volume V1 of the scalar-containing region is small

compared with the total volume V ; this is a condition satisfied in nearly all real situations.

It has been assumed for many years, following such papers as Batchelor [1] and Corrsin

[6], and has relatively recently been directly confirmed in beautiful experiments by Dahm

et al. [7], that scalar-containing regions are drawn out into thin threads or sheets.

These become widely separated, and the threads or sheets regenerate (albeit with lower

concentrations within them). The thinness ensures large values of |∇C| where C is large,

i.e. E{(∇C)2|C = q} is large when q is large. Since V1/V is small, large values of q are

associated with small values of pC as in Figure 1. Thus gC/pC is large where pC is small,

where gC is defined in (4.5). Scalar diffuses by molecular diffusion across the boundaries

of these scalar-containing regions into the ambient fluid in which, because V1/V ≪ 1,

concentrations are low and thorough mixing ensures that |∇C| is small there, except very

near the boundaries of the thin threads or sheets containing most of the scalar. Thus the

converse to the above holds: E{(∇C)2|C = q} is small where q is small and, because V1/V

is small, small values of q tend to be associated with large values of pC . Thus gC/pC is

small where pC is large.

These arguments suggest the qualitative, and new, conclusion that in the postulated

circumstances:

pC and
gC

pC
depend inversely upon one another. (4.7)

This is a principal result in the present paper, arguably the principal result.

It is interesting to compare it with the well-studied proposal in Dopazo (1975), which

is that

∂gC

∂q
= −3(ν/κ)

λ2
(q − µ)pC , (4.8)
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where λ is the Taylor microscale and ν is the kinematic viscosity. Pope [24, p. 159] and

Dopazo [9, p. 411] note that use of (4.8) in (4.4) preserves the shape of pC so that

(4.8) does not enable the initial double-delta-function distribution (4.1) to evolve via (4.4)

towards, for example, the Gaussian distribution (4.6). While this is a serious drawback,

more relevant to present purposes is that, as already noted, both Dopazo and Pope

suppose that a closure hypothesis for (4.4) should lead to a pC which is Gaussian. In this

case, i.e. when (4.6) holds, it is easy to show that (4.8) gives

gC =
3(ν/κ)

λ2
σ2pC , (4.9)

i.e. gC/pC is independent of pC , thus contradicting (4.7).

5 A specific closure hypothesis for the SSMT

This paper has tried to emphasize the difficulty of modelling pC , including the likelihood

that many different functional forms occur in practice and therefore that different closure

hypotheses for the SSMT may hold in different circumstances. However, a particular

closure hypothesis consistent with (4.7) arises from a PDF obtained in earlier work by

the author with Zimmerman (Zimmerman & Chatwin [35]; Chatwin & Zimmerman [5]),

and it is natural to consider this further. In the first of these papers, turbulent dispersion

was modelled simplistically by supposing that the scalar disperses deterministically with

no velocity field and the sole stochastic feature is that the sensor measuring C is located

randomly within a domain of finite volume. The calculations in the two papers are for a

one-dimensional domain −L 6 x 6 L, but there is no difficulty in extending the ideas to

three dimensions. It is noted that an alternative interpretation of the random feature is

that the domain is randomly translated; this is analogous to the random stirring discussed

above. The PDF pC can be obtained from first principles by elementary methods. For

large t, it is well approximated by

pC(q) =
1

πC0Θ

{

1 − (q − µ)2

C2
0Θ

2

}− 1
2

(q1 < q < q2), (5.1)

where C0 and µ are positive constants (with µ being the mean concentration as usual),

and

q1 = µ − C0Θ , q2 = µ + C0Θ , Θ = e−π2T , T =
κt

l2
. (5.2)

This PDF has integrable singularities at q1 and q2, and is symmetric about µ. In view

of the discussion above, it is pertinent to note that as t → ∞ (i.e. T → ∞), q1 → µ

from below and q2 → µ from above. Thus, as t → ∞, pC in equation (5.1) approaches

δ(q − µ) consistent with (3.4). But the approach occurs because the singularities at q1 and

q2 move closer to one another and eventually coalesce. At no stage is pC approximated,

even crudely, by the Normal distribution in (4.6). It may also be noted that it is easy to

show from (5.1) that σ = C0Θ/
√

2 so that equation (3.6) is satisfied. Finally, since (5.1)

may be rewritten

pC(q) =
1

π
(q − q1)

− 1
2 (q2 − q)− 1

2 (q1 < q < q2), (5.3)
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it is a member of the beta distribution family which has been used frequently in turbulent

dispersion (e.g. see Chatwin et al. [4]).

Now pC in (5.1) must satisfy (4.4) for q1 < q < q2. It is then straightforward to show

from (4.4) that

gCpC =
1

L2
(q1 < q < q2). (5.4)

and this is equivalent to

E
{

(∇C)2 | C = q
}

=
gC

pC
=

(

1

pCL

)2

(q1 < q < q2), (5.5)

consistent with (4.7) above. The results in (5.4) and (5.5) can also be obtained easily and

directly from the model equations in Chatwin & Zimmerman [5].

It will also be shown – see (6.17) and the remarks following – that (5.4) applies to an

exact solution for the PDF derived and used by Kowe & Chatwin [14].

In both this exact solution, and in (5.1), there are singularities in pC at q = q1 and

q = q2, and (5.4) applies in both cases only in the limits as q → q1 from above and as

q → q2 from below.

However it is clear that (5.4) cannot apply at q1 and q2 when there are no singularities,

for then both pC and ∇C (hence gC/pC) are zero at q1 and q2. Moreover the PDF in (5.1)

is very different in shape from that in Figure 1, and from that underlying the argument

leading to (4.7). (It could be argued that each side of the symmetric expression in (5.1)

is qualitatively similar to the left-hand side of the experimental curve in Figure 1 so that

part of the argument leading to (4.7) still applies.) Thus (5.4) cannot apply universally,

but this has nowhere been suggested. Like any other simple closure hypothesis, its range

of applicability must be limited and so therefore are the results in the penultimate section

of this paper when similarity solutions satisfying (5.4) are briefly investigated.

Before this, it is of interest and importance to consider timescales. From the purely

mathematical viewpoint, the length L in the Zimmerman & Chatwin [35] model appearing

in (5.4) is arbitrary (although the title of the paper makes it clear that it is a microscale

in real applications). In the work leading to (5.1), the timescale is of order L2/κ, whereas

it is well-known that in most circumstances the timescale associated with the evolution of

pC is of order l/u, where l is proportional to the size of the energy-containing eddies and

u is a velocity of the order of the size of the velocity fluctuations. Now [28, p. 67], u3/l is

of order of νu2/λ2 (where λ is the Taylor microscale introduced in (4.8) and (4.9) above),

so that l/u is of order L2/κ provided

L2

κ
∝ λ2

ν
⇒ L ∝ λ

(ν/κ)1/2
= λC , (5.6)

where λC is the Taylor microscale of the concentration field [8]. This result is entirely

consistent with (4.9) and (5.4). Thus (4.9) gives gCpC ∝ (ν/κ)λ−2(σpC)2 and (5.4) gives

gCpC ∝ L−2. In general, σpC is of order unity so that the magnitudes of (4.9) and (5.4) are

of the same order provided L−2 ∝ (ν/κ)λ−2, i.e. L ∝ λC in agreement with (5.6). (These

remarks do not weaken the earlier criticism of (4.8) and (4.9) above.)
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6 Some consequences of the new closure hypothesis: similarity solutions

This section shows that the closure hypothesis (5.4) is consistent with two families of

similarity solutions for pC . As usual, similarity solutions can be expected to apply in

the later stages of the dispersion process when the influence of the initial conditions

has weakened. Thus the solutions will not necessarily be expected to satisfy the initial

double-delta-function distribution in (4.1), but to have plausibly developed from it in the

way, for example, suggested after (5.1) above.

Substitution of (5.4) into (4.4) gives

∂pC

∂t
=

κ

L2

∂

∂q

(

p−2
C

∂pC

∂q

)

, (6.1)

which is reminiscent of the porous medium equation

∂u

∂t
= ∇.(un∇u), (6.2)

except that n is not positive (see Ockendon et al. [22, p. 257]). For similarity solutions,

write

T =
κt

L2
, η =

(q − q0)

C0Θ1(T )
, pC =

f(η)

C0Θ2(T )
, (6.3)

where q0 and C0 are positive constants, and Θ1 , Θ2 and f are positive functions to be

determined. Substitution in equation (6.1) gives

d2

dη2

(

1

f

)

=
Θ̇2Θ

2
1

Θ3
2

f +
Θ̇1Θ1

Θ2
2

η
df

dη
, (6.4)

where a dot denotes differentiation with respect to T . It follows that for similarity solutions

there must be constants α and β such that

Θ̇2Θ
2
1

Θ3
2

= −α ,
Θ̇1Θ1

Θ2
2

= −β, (6.5)

where the minus signs are chosen because, then, positive values of α and β allow Θ1

and Θ2 to tend to zero as T → ∞ to attain the limiting delta-function distribution in

equation (3.4). Then equation (6.4) becomes

d2

dη2

(

1

f

)

= −αf − βη
df

dη
. (6.6)

It follows from equation (6.5) that

Θ̇2

Θ2
=

α

β

Θ̇1

Θ1
, (6.7)

and hence that

Θ2 = AΘ
α/β
1 , (6.8)

where A is an arbitrary positive constant. Thus

Θ̇1 = −βA2Θ
(2α−β)/β
1 , (6.9)

and there are two cases to consider.
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If α�β

Θ1 =
[

2(α − β)A2T + Θ
−2(α−β)/β
10

]−β/2(α−β)

Θ2 = A
[

2(α − β)A2T + Θ
−2(α−β)/β
10

]−α/2(α−β)

,
(6.10)

where Θ10 = Θ1(0). It follows from equation (6.10) that α > β because, if α < β,

equation (6.10) predicts that Θ1 = Θ2 = 0 in finite time. For large values of T , the

dependence of Θ1 and Θ2 on Θ10 weakens, and the results in equation (6.10) can be

approximated by

Θ1 =
[

2(α − β)A2T
]−β/2(α−β)

, Θ2 = A
[

2(α − β)A2T
]−α/2(α−β)

, (6.11)

or, more concisely,

Θ1 = B1T
−p , Θ2 = B2T

−p− 1
2 , p =

β

2(α − β)
> 0 ,

B2
1

B2
2

= 2(α − β). (6.12)

The second case is when α = β. Direct integration then gives

Θ1 = Θ10e
−αA2T , Θ2 = AΘ10e

−αA2T , (6.13)

and equation (6.6) becomes

d2

dη2

(

1

f

)

= −α
d

dη
(ηf). (6.14)

Equation (6.14) can be integrated once trivially, and the substitution ηf = g−1 then enables

it to be integrated completely. A special case of this family of solutions is equation (5.1)

for which

α = 1 , q0 = µ , A = π , f = (1 − η2)− 1
2 . (6.15)

Returning now to the general case given by equation (6.6), an exact solution has been

found when α = 2β so that, from equation (6.12),

p =
1

2
, Θ1 = B1T

− 1
2 , Θ2 = B2T

−1 ,
B1

B2
= α

1
2 . (6.16)

This solution is

f(η) = dη−1(c log η)− 1
2 (6.17)

for η1 < η < η2 where c = −αd2, and d is an arbitrary positive constant. Thus c < 0 and

η < 1 for the realistic case when α is positive. The expression in equation (6.17) gives a

PDF satisfying equation (2.4) provided

[

log(1/η1)
]

1
2 −

[

log(1/η2)
]

1
2 =

1

2
T− 1

2 , (6.18)

independently of the values of α and d. A special case of this exact solution is equation (30)

in Chatwin & Zimmerman [5] when

η1 = exp

(

− 1

4T

)

, η2 = 1. (6.19)

This PDF is bimodal like that in equation (5.1) above, with modes at the end points

η1 and η2. As T → ∞, η1 tends to η2 so that the limiting case of the delta-function
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distributions in equation (3.4) is again approached by the modes coalescing and not

via the Gaussian (Normal) PDF in equation (4.6). As well as arising in the model of

Zimmerman & Chatwin [35], it is remarkable to note that essentially the same PDF

was shown by Kowe and Chatwin [14] to occur in certain cases when the velocity field

is the linear rate-of-strain field considered in a classical paper describing ‘hot spots’ by

Townsend [30]. (The random feature is then that the principal axes of rate-of-strain are

oriented in random directions in space.)

Solutions of equation (6.6) when α and β have arbitrary values must presumably be

found numerically; in all cases there will be an equation analogous to equation (6.18).

There is an interesting generalisation of equation (5.4), the closure hypothesis proposed

in this paper and investigated above. This is to replace equation (5.4) by

gCpC =
h(T )

L2
, (6.20)

where h(T ) is an arbitrary (non-dimensional) function taking positive values. Physically,

this could represent random stirring at a time-varying intensity. Use of the variables in

equation (6.3) in equation (4.4), but with equation (6.20) replacing equation (5.4), yields

h
d2

dη2

(

1

f

)

=
Θ̇2Θ

2
1

Θ3
2

f +
Θ̇1Θ1

Θ2
2

η
df

dη
, (6.21)

instead of equation (6.4). Thus

Θ̇2Θ
2
1

Θ3
2

= −αh ,
Θ̇1Θ1

Θ2
2

= −βh, (6.22)

are the generalisations of the results in equation (6.5). Hence equations (6.6) and (6.8)

remain valid without change. Once more there are two cases to consider. If α�β

h(T ) =
1

2A2(α − β)

d

dT

{

Θ
−2(α−β)/β
1

}

, (6.23)

whereas, if α = β,

h(T ) = − 1

αA2

d

dT
{logΘ1} . (6.24)

7 Some concluding remarks

The new closure hypothesis in equation (5.4) has been investigated very recently, using

numerical simulations, by Yeun [33] and Zimmerman [34]. Their results are so far

preliminary, and do not allow firm conclusions.

As noted near the beginning of this paper, theoretical research on the PDF of a

dispersing scalar is still a relatively new topic. While, ultimately, all models must be

validated against data, the assumptions made in many papers, and this one, that render

the equations to some extent tractable are such that direct experimental comparisons

are then not possible. This applies particularly to the simplifications that the scalar

distribution and the velocity field are homogeneous. Moreover, costs make experimental

investigations of unsteady phenomena in turbulent dispersion unattractive.

It is well-known that turbulence, and turbulent diffusion, are stochastic processes.

The present contribution emphasises that the details of the stochasticity are controlled by
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physics. But many, if not most, real world processes are also stochastic and it is hoped that

this work may encourage applied mathematicians to undertake more stochastic modelling

while, at the same time, seeking to understand, and involve, the laws controlling the

stochasticity.
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