36 research outputs found

    Escherichia coli signal recognition particle: a historical perspective

    No full text

    Nascent Lep insert into the Escherichia coli inner membrane in the vicinity of YidC, SecA.

    Get PDF
    AbstractTargeting and assembly of the Escherichia coli inner membrane protein leader peptidase (Lep) was studied using a homologous in vitro targeting/translocation assay. Assembly of full-length Lep was efficient in the co-translational presence of membrane vesicles and hardly occurred when membranes were added post-translationally. This is consistent with the signal recognition particle-dependent targeting of Lep. Crosslinking experiments showed that the hydrophilic region P1 of nascent membrane-inserted Lep 100-mer was in the vicinity of SecA and SecY, whereas the first transmembrane domain H1 was in the vicinity of YidC. These results suggested that YidC, together with the Sec translocase, functions in the assembly of Lep. YidC might be a more generic component in the assembly of inner membrane proteins

    Paramagnetic Rim Lesions are Specific to Multiple Sclerosis: An International Multicenter 3T MRI Study.

    No full text
    In multiple sclerosis (MS), a subset of chronic active white matter lesions are identifiable on magnetic resonance imaging by their paramagnetic rims, and increasing evidence supports their association with severity of clinical disease. We studied their potential role in differential diagnosis, screening an international multicenter clinical research-based sample of 438 individuals affected by different neurological conditions (MS, other inflammatory, infectious, and non-inflammatory conditions). Paramagnetic rim lesions, rare in other neurological conditions (52% of MS vs 7% of non-MS cases), yielded high specificity (93%) in differentiating MS from non-MS. Future prospective multicenter studies should validate their role as a diagnostic biomarker. ANN NEUROL 2020;88:1034-1042
    corecore