297 research outputs found

    Order Parameter at the Boundary of a Trapped Bose Gas

    Full text link
    Through a suitable expansion of the Gross-Pitaevskii equation near the classical turning point, we obtain an explicit solution for the order parameter at the boundary of a trapped Bose gas interacting with repulsive forces. The kinetic energy of the system, in terms of the classical radius RR and of the harmonic oscillator length aHOa_{_{HO}}, follows the law Ekin/NR2[log(R/aHO)+const.]E_{kin}/N \propto R^{-2} [\log (R/a_{_{HO}}) + \hbox{const.}], approaching, for large RR, the results obtained by solving numerically the Gross-Pitaevskii equation. The occurrence of a Josephson-type current in the presence of a double trap potential is finally discussed.Comment: 11 pages, REVTEX, 4 figures (uuencoded-gzipped-tar file) also available at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm

    Parity Invariance and Effective Light-Front Hamiltonians

    Get PDF
    In the light-front form of field theory, boost invariance is a manifest symmetry. On the downside, parity and rotational invariance are not manifest, leaving the possibility that approximations or incorrect renormalization might lead to violations of these symmetries for physical observables. In this paper, it is discussed how one can turn this deficiency into an advantage and utilize parity violations (or the absence thereof) in practice for constraining effective light-front Hamiltonians. More precisely, we will identify observables that are both sensitive to parity violations and easily calculable numerically in a non-perturbative framework and we will use these observables to constrain the finite part of non-covariant counter-terms in effective light-front Hamiltonians.Comment: REVTEX, 9 page

    Application of Pauli-Villars regularization and discretized light-cone quantization to a single-fermion truncation of Yukawa theory

    Get PDF
    We apply Pauli-Villars regularization and discretized light-cone quantization to the nonperturbative solution of (3+1)-dimensional Yukawa theory in a single-fermion truncation. Three heavy scalars, including two with negative norm, are used to regulate the theory. The matrix eigenvalue problem is solved for the lowest-mass state with use of a new, indefinite-metric Lanczos algorithm. Various observables are extracted from the wave functions, including average multiplicities and average momenta of constituents, structure functions, and a form factor slope.Comment: 21 pages, 7 figures, RevTeX; published version: more extensive data in the tables of v

    Conserving and Gapless Approximations for an Inhomogeneous Bose Gas at Finite Temperatures

    Full text link
    We derive and discuss the equations of motion for the condensate and its fluctuations for a dilute, weakly interacting Bose gas in an external potential within the self--consistent Hartree--Fock--Bogoliubov (HFB) approximation. Account is taken of the depletion of the condensate and the anomalous Bose correlations, which are important at finite temperatures. We give a critical analysis of the self-consistent HFB approximation in terms of the Hohenberg--Martin classification of approximations (conserving vs gapless) and point out that the Popov approximation to the full HFB gives a gapless single-particle spectrum at all temperatures. The Beliaev second-order approximation is discussed as the spectrum generated by functional differentiation of the HFB single--particle Green's function. We emphasize that the problem of determining the excitation spectrum of a Bose-condensed gas (homogeneous or inhomogeneous) is difficult because of the need to satisfy several different constraints.Comment: plain tex, 19 page

    Exploring Mars at the nanoscale: applications of transmission electron microscopy and atom probe tomography in planetary exploration

    Get PDF
    The upcoming Mars Sample Return (MSR) mission aims to deliver small quantities of Martian rocks to the Earth. Investigating these precious samples requires the development and application of techniques that can extract the greatest amount of high quality data from the minimum sample volume, thereby maximising science return from MSR. Atom probe tomography (APT) and transmission electron microscopy (TEM) are two complementary techniques that can obtain nanoscale structural, geochemical and, in the case of atom probe, isotopic information from small sample volumes. Here we describe how both techniques operate, as well as review recent developments in sample preparation protocols. We also outline how APT has been successfully applied to extraterrestrial materials in the recent past. Finally, we describe how we have studied Martian meteorites using TEM and APT in close coordination in order to characterise the products of water/rock interactions in t h e cru st of Ma r s – a k ey sc ie n ce goal of MSR. Our results provide new insights into the Martian hydrosphere and the mechanisms of anhydrous-hydrous mineral replacement. In light of the unique results provided by these tools, APT and TEM should form a crucial part at the culmination of a correlative analytical pipeline for MSR mission materials

    A Study of Heavy-Light Mesons on the Transverse Lattice

    Get PDF
    We present results from a study of meson spectra and structure in the limit where one quark is infinitely heavy. The calculations, based on the framework of light-front QCD formulated on a transverse lattice, are the first non-perturbative studies of B-mesons in light-front QCD. We calculate the Isgur-Wise form factor, light-cone distribution amplitude, the heavy-quark parton distribution function and the leptonic decay constant of B-mesons.Comment: 5 pages, 3 figures, Revtex, corrected typos, added references, included moment

    Condensate fraction and critical temperature of a trapped interacting Bose gas

    Full text link
    By using a mean field approach, based on the Popov approximation, we calculate the temperature dependence of the condensate fraction of an interacting Bose gas confined in an anisotropic harmonic trap. For systems interacting with repulsive forces we find a significant decrease of the condensate fraction and of the critical temperature with respect to the predictions of the non-interacting model. These effects go in the opposite direction compared to the case of a homogeneous gas. An analytic result for the shift of the critical temperature holding to first order in the scattering length is also derived.Comment: 8 pages, REVTEX, 2 figures, also available at http://anubis.science.unitn.it/~oss/bec/BEC.htm

    Penguins leaving the pole: bound-state effects in B decaying to K* + photon

    Full text link
    Applying perturbative QCD methods recently seen to give a good description of the two body hadronic decays of the B meson, we address the question of bound-state effects on the decay B into K* + gamma. Consistent with most analyses, we demonstrate that gluonic penguins, with photonic bremsstrahlung off a quark, change the decay rate by only a few percent. However, explicit off-shell b-quark effects normally discarded are found to be large in amplitude, although in the standard model accidents of phase minimize the effect on the rate. Using an asymptotic distribution amplitude for the K* and just the standard model, we can obtain a branching ratio of a few times 10^{-5}, consistent with the observed rate.Comment: 12 pages. U. of MD PP \#94-129; DOE/ER/40762-033; WM-94-104. LaTeX, One figure, available by fax or pos

    Gravitons in One-Loop Quantum Cosmology: Correspondence Between Covariant and Non-Covariant Formalisms

    Get PDF
    The discrepancy between the results of covariant and non-covariant one-loop calculations for higher-spin fields in quantum cosmology is analyzed. A detailed mode-by-mode study of perturbative quantum gravity about a flat Euclidean background bounded by two concentric 3-spheres, including non-physical degrees of freedom and ghost modes, leads to one-loop amplitudes in agreement with the covariant Schwinger-DeWitt method. This calculation provides the generalization of a previous analysis of fermionic fields and electromagnetic fields at one-loop about flat Euclidean backgrounds admitting a well-defined 3+1 decomposition.Comment: 29 pages, latex, recently appearing in Physical Review D, volume 50, pages 6329-6337, November 1994. The authors apologize for the delay in circulating the paper, due to technical problems now fixe

    The BRST quantization and the no-ghost theorem for AdS_3

    Full text link
    In our previous papers, we prove the no-ghost theorem without light-cone directions (hep-th/0005002, hep-th/0303051). We point out that our results are valid for more general backgrounds. In particular, we prove the no-ghost theorem for AdS_3 in the context of the BRST quantization (with the standard restriction on the spin). We compare our BRST proof with the OCQ proof and establish the BRST-OCQ equivalence for AdS_3. The key in both approaches lies in the certain structure of the matter Hilbert space as a product of two Verma modules. We also present the no-ghost theorem in the most general form.Comment: 22 pages, JHEP and AMS-LaTeX; v2 & 3: minor improvement
    corecore