43 research outputs found

    Normal phase HPLC profiling of the acetylcholinesterase activity in apolar plant extracts

    Get PDF
    Among nineteen evaluated Clusiaceous species, one stem bark CH2Cl2 crude extract was selected based on a significant inhibition of acetylcholinesterase (AChE) using the micro-dilution Ellman\u27s method [1]. A normal phase HPLC profiling with micro-fractionation of this extract provided discrete fractions every 20 seconds. In order to obtain a comprehensive profiling of AChE activity all microfractions were tested [2] in dilution assay (Ellman) as well as by bioautography (the Fast Blue B salt method). Furthermore the potency of inhibition was evaluated both by keeping the genuine concentration within the extract and after normalisation to a standard concentration level. From the active fractions five pure compounds were isolated and identified. The different methods of sample preparation and biological evaluation associated with normal-phase micro-fractionation of plant extracts are critically discussed

    Breast cancer resistance protein (BCRP/ABCG2): New inhibitors and QSAR studies by a 3D linear solvation energy approach

    Get PDF
    A series of compounds derived from naturally occurring flavonoids and synthetic analogs have been evaluated on cell lines overexpressing the wild-type breast cancer resistance protein (BCRP/ABCG2) half-transporter. Human ABCG2-transfected cells were used for screening their inhibitory activity. Five new natural compounds obtained from Morus mesozygia Stapf and one synthetic chromone, comprising a flavonoidic scaffold, were also evaluated. Based on the results obtained with a total of 34 compounds, a 3D linear solvation energy QSAR was investigated by VolSurf descriptors of molecular-interaction fields (MIFs) related to hydrophobic-interaction forces, polarisability and hydrogen-bonding capacity. Accuracy of the constructed 3D-QSAR model was attested by a correlation coefficient r2 of 0.77. Shape parameters and hydrophobicity were revealed to be major physicochemical parameters responsible for the inhibition activity of flavonoid derivatives and synthetic analogs towards ABCG2, whereas hydrogen-bond donor capacity appeared highly unfavorable

    Binding of arylpiperazines, (aryloxy)propanolamines, and tetrahydropyridylindoles to the 5-HT1A receptor: contribution of the molecular lipophilicity potential to three-dimensional quantitative structure-affinity relationship models.

    No full text
    A set of 280 5-HT1A receptor ligands were selected from available literature data according to predefined criteria and subjected to three-dimensional quantitative structure-affinity relationship analysis using comparative molecular field analysis. No model was obtained for serotonin analogues (19 compounds) and aminotetralins (60 compounds), despite a variety of alignment hypotheses being tried. In contrast, the steric, electrostatic, and lipophilicity fields alone and in combination yielded informative models for arylpiperazines (101 training compounds and 12 test compounds), (aryloxy)propanolamines (30 training compounds and four test compounds), and tetrahydropyridylindoles (54 training compounds) taken separately (models A, B, and C). Arylpiperazines and (aryloxy)propanolamines were then combined successfully to yield reasonably good models for 131 compounds (model D). In a last step, the three chemical classes (185 compounds) were combined, again successfully (model E). This stepwise procedure not only ascertains self-consistency in alignments but it also allows statistical signals (i.e., favorable or unfavorable regions around molecules) to emerge which cannot exist in a single chemical class. The models so obtained reveal a number of interaction sites between ligands and the 5-HT1A receptor, and extend the information gathered from a model based on homology modeling

    Predicting blood-brain barrier permeation from three-dimensional molecular structure.

    No full text
    Predicting blood-brain barrier (BBB) permeation remains a challenge in drug design. Since it is impossible to determine experimentally the BBB partitioning of large numbers of preclinical candidates, alternative evaluation methods based on computerized models are desirable. The present study was conducted to demonstrate the value of descriptors derived from 3D molecular fields in estimating the BBB permeation of a large set of compounds and to produce a simple mathematical model suitable for external prediction. The method used (VolSurf) transforms 3D fields into descriptors and correlates them to the experimental permeation by a discriminant partial least squares procedure. The model obtained here correctly predicts more than 90% of the BBB permeation data. By quantifying the favorable and unfavorable contributions of physicochemical and structural properties, it also offers valuable insights for drug design, pharmacological profiling, and screening. The computational procedure is fully automated and quite fast. The method thus appears as a valuable new tool in virtual screening where selection or prioritization of candidates is required from large collections of compounds

    The permeability P-glycoprotein: a focus on enantioselectivity and brain distribution.

    No full text
    IMPORTANCE OF THE FIELD: The permeability glycoprotein (P-gp) is an important protein transporter involved in the disposition of many drugs with different chemical structures, but few studies have examined a possible stereoselectivity in its activity. P-gp can have a major impact on the distribution of drugs in selected organs, including the brain. Polymorphisms of the ABCB1 gene, which encodes for P-gp, can influence the kinetics of several drugs. AREAS COVERED IN THIS REVIEW: A search including publications from 1990 up to 2009 was performed on P-gp stereoselectivity and on the impact of ABCB1 polymorphisms on enantiomer brain distribution. WHAT THE READER WILL GAIN: Despite stereoselectivity not being expected because of the large variability of chemical structures of P-gp substrates, structure-activity relationships suggest different P-gp-binding sites for enantiomers. Enantioselectivity in the activity of P-gp has been demonstrated by in vitro studies and in animal models (preferential transport of one enantiomer or different inhibitory potencies towards P-gp activity between enantiomers). There is also in vivo evidence of an enantioselective drug transport at the human blood-brain barrier. TAKE HOME MESSAGE: The significant enantioselective activity of P-gp might be clinically relevant and must be taken into account in future studies

    Esterase-like activity of human serum albumin toward prodrug esters of nicotinic acid.

    No full text
    The esterase-like activity of human serum albumin (HSA) toward esters of nicotinic acid was investigated under a variety of conditions such as protein concentration, temperature, pH, ionic strength, nature of buffers, and presence of organic solvents. Initial rate constants of hydrolysis of 18 nicotinates in the presence of 50 microM HSA were measured at pH 7.4 and 37 degrees C. The substrates displayed half-lifes ranging from less than 15 min (2-butoxyethyl nicotinate) to more than 95 hr (methyl nicotinate). The hydrolysis of tert-butyl nicotinate was too slow to be measurable, whereas 1-carbamoylethyl nicotinate was stabilized against hydrolysis by the presence of HSA. The rate constants of HSA-catalyzed hydrolysis were well correlated (r2 = 0.85; N = 12) with previously published data obtained in human plasma, indicating similar substrate specificities in the two biological preparations. All evidence points to serum albumin as the possible major catalyst of hydrolysis of nicotinate esters in human plasma
    corecore