234 research outputs found
Four-momentum boosted Fermion fields
A formulation of the fermion action is discussed which includes an explicit
four momentum boost on the field prior to discretisation. This is used to shift
the zero of lattice momentum to lie near one of the on-shell quark poles. The
positive pole is selected if we wish to describe a valence quark, and negative
pole for a valence anti-quark. Like NRQCD, the typical lattice momenta involved
in hadronic correlation functions can be kept small: of order , rather than even when describing heavy quarks. If we expand
around the particle pole, the anti-particle correlator will be poorly described
for large . However, in that case the anti-particle will be far off
shell and will only affect unphysical, renormalization factors. The formulation
produces the correct continuum limit, and preliminary results have been
obtained (for an unimproved action) of both the one-loop self energy and a
non-perturbative correlation function.Comment: Talk presented at Lattice2003(heavy). 3 pages, 1 figur
The decay constants and in the continuum limit of domain wall lattice QCD
We present results for the decay constants of the and mesons
computed in lattice QCD with dynamical flavours. The simulations are
based on RBC/UKQCD's domain wall ensembles with both physical and unphysical
light-quark masses and lattice spacings in the range 0.11--0.07fm. We
employ the domain wall discretisation for all valence quarks.
The results in the continuum limit are
and
and
.
Using these results in a Standard Model analysis we compute the predictions
and
for the
CKM matrix elements
Hardware and software status of QCDOC
QCDOC is a massively parallel supercomputer whose processing nodes are based
on an application-specific integrated circuit (ASIC). This ASIC was
custom-designed so that crucial lattice QCD kernels achieve an overall
sustained performance of 50% on machines with several 10,000 nodes. This strong
scalability, together with low power consumption and a price/performance ratio
of $1 per sustained MFlops, enable QCDOC to attack the most demanding lattice
QCD problems. The first ASICs became available in June of 2003, and the testing
performed so far has shown all systems functioning according to specification.
We review the hardware and software status of QCDOC and present performance
figures obtained in real hardware as well as in simulation.Comment: Lattice2003(machine), 6 pages, 5 figure
Status of and performance estimates for QCDOC
QCDOC is a supercomputer designed for high scalability at a low cost per
node. We discuss the status of the project and provide performance estimates
for large machines obtained from cycle accurate simulation of the QCDOC ASIC.Comment: 3 pages 1 figure. Lattice2002(machines
Pion mass dependence of the semileptonic scalar form factor within finite volume
We calculate the scalar semileptonic kaon decay in finite volume at the
momentum transfer , using chiral perturbation
theory. At first we obtain the hadronic matrix element to be calculated in
finite volume. We then evaluate the finite size effects for two volumes with and and find that the difference between the finite
volume corrections of the two volumes are larger than the difference as quoted
in \cite{Boyle2007a}. It appears then that the pion masses used for the scalar
form factor in ChPT are large which result in large finite volume corrections.
If appropriate values for pion mass are used, we believe that the finite size
effects estimated in this paper can be useful for Lattice data to extrapolate
at large lattice size.Comment: 19 pages, 5 figures, accepted for publication in EPJ
Rare Semileptonic Decays of Heavy Mesons with Flavor SU(3) Symmetry
In this paper, we calculate the decay rates of , , , and
semileptonic decay processes, in which only the light
quarks decay, while the heavy flavors remain unchanged. The branching ratios of
these decay processes are calculated with the flavor SU(3) symmetry. The
uncertainties are estimated by considering the SU(3) breaking effect. We find
that the decay rates are very tiny in the framework of the Standard Model. We
also estimate the sensitivities of the measurements of these rare decays at the
future experiments, such as BES-III, super- and LHC-.Comment: 4 pages and 1 figure, accepted by European Physical Journal
The pion's electromagnetic form factor at small momentum transfer in full lattice QCD
We compute the electromagnetic form factor of a "pion" with mass m_pi=330MeV
at low values of Q^2\equiv -q^2, where q is the momentum transfer. The
computations are performed in a lattice simulation using an ensemble of the
RBC/UKQCD collaboration's gauge configurations with Domain Wall Fermions and
the Iwasaki gauge action with an inverse lattice spacing of 1.73(3)GeV. In
order to be able to reach low momentum transfers we use partially twisted
boundary conditions using the techniques we have developed and tested earlier.
For the pion of mass 330MeV we find a charge radius given by
_{330MeV}=0.354(31)fm^2 which, using NLO SU(2) chiral perturbation
theory, extrapolates to a value of =0.418(31)fm^2 for a physical pion,
in agreement with the experimentally determined result. We confirm that there
is a significant reduction in computational cost when using propagators
computed from a single time-slice stochastic source compared to using those
with a point source; for m_pi=330MeV and volume (2.74fm)^3 we find the
reduction is approximately a factor of 12.Comment: 20 pages, 3 figure
Direct CP violation and the ΔI=1/2 rule in K→ππ decay from the standard model
We present a lattice QCD calculation of the ΔI=1/2, K→ππ decay amplitude A0 and ϵ′, the measure of direct CP violation in K→ππ decay, improving our 2015 calculation [1] of these quantities. Both calculations were performed with physical kinematics on a 323×64 lattice with an inverse lattice spacing of a-1=1.3784(68) GeV. However, the current calculation includes nearly 4 times the statistics and numerous technical improvements allowing us to more reliably isolate the ππ ground state and more accurately relate the lattice operators to those defined in the standard model. We find Re(A0)=2.99(0.32)(0.59)×10-7 GeV and Im(A0)=-6.98(0.62)(1.44)×10-11 GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result Re(A0)=3.3201(18)×10-7 GeV. These results for A0 can be combined with our earlier lattice calculation of A2 [2] to obtain Re(ϵ′/ϵ)=21.7(2.6)(6.2)(5.0)×10-4, where the third error represents omitted isospin breaking effects, and Re(A0)/Re(A2)=19.9(2.3)(4.4). The first agrees well with the experimental result of Re(ϵ′/ϵ)=16.6(2.3)×10-4. A comparison of the second with the observed ratio Re(A0)/Re(A2)=22.45(6), demonstrates the standard model origin of this “ΔI=1/2 rule” enhancement.We present a lattice QCD calculation of the , decay amplitude and , the measure of direct CP-violation in decay, improving our 2015 calculation of these quantities. Both calculations were performed with physical kinematics on a lattice with an inverse lattice spacing of GeV. However, the current calculation includes nearly four times the statistics and numerous technical improvements allowing us to more reliably isolate the ground-state and more accurately relate the lattice operators to those defined in the Standard Model. We find GeV and GeV, where the errors are statistical and systematic, respectively. The former agrees well with the experimental result GeV. These results for can be combined with our earlier lattice calculation of to obtain , where the third error represents omitted isospin breaking effects, and Re/Re. The first agrees well with the experimental result of . A comparison of the second with the observed ratio ReRe, demonstrates the Standard Model origin of this " rule" enhancement
The scalar radius of the pion from Lattice QCD in the continuum limit
We extend our study of the pion scalar radius in two-flavour lattice QCD to
include two additional lattice spacings as well as lighter pion masses,
enabling us to perform a combined chiral and continuum extrapolation. We find
discretisation artefacts to be small for the radius, and confirm the importance
of the disconnected diagrams in reproducing the correct chiral behaviour. Our
final result for the scalar radius of the pion at the physical point is
fm, corresponding
to a value of for the low-energy constant
of NLO chiral perturbation theory.Comment: 4 pages, 4 figures, uses svjour.cl
Nature of Sonoluminescence: Noble Gas Radiation Excited by Hot Electrons in "Cold" Water
We show that strong electric fields occurring in water near the surface of
collapsing gas bubbles because of the flexoelectric effect can provoke dynamic
electric breakdown in a micron-size region near the bubble and consider the
scenario of the SBSL. The scenario is: (i) at the last stage of incomplete
collapse of the bubble the gradient of pressure in water near the bubble
surface has such a value and sign that the electric field arising from the
flexoelectric effect exceeds the threshold field of the dynamic electrical
breakdown of water and is directed to the bubble center; (ii) mobile electrons
are generated because of thermal ionization of water molecules near the bubble
surface; (iii) these electrons are accelerated in ''cold'' water by the strong
electric fields; (iv) these hot electrons transfer noble gas atoms dissolved in
water to high-energy excited states and optical transitions between these
states produce SBSL UV flashes in the trasparency window of water; (v) the
breakdown can be repeated several times and the power and duration of the UV
flash are determined by the multiplicity of the breakdowns. The SBSL spectrum
is found to resemble a black-body spectrum where temperature is given by the
effective temperature of the hot electrons. The pulse energy and some other
characteristics of the SBSL are found to be in agreement with the experimental
data when realistic estimations are made.Comment: 11 pages (RevTex), 1 figure (.ps
- …