17,906 research outputs found

    Analytic discs in the boundary and compactness of Hankel operators with essentially bounded symbols

    Get PDF
    AbstractWe derive conditions for compactness of Hankel operators Hf:A2(Ω)→L2(Ω) (Hf(g):=(I−P)(f¯g)) with bounded, holomorphic symbols f for a large class of convex and bounded domains Ω with Ω⊆Dk

    Insights from Asteroseismology of Massive Stars: The Need for Additional Angular Momentum Transport Mechanisms

    Full text link
    In massive stars, rotation and oscillatory waves can have a tight interplay. In order to assess the importance of additional angular momentum transport mechanisms other than rotation, we compare the asteroseismic properties of a uniformly rotating model and a differentially rotating one. Accordingly, we employ the observed period spacing of 36 dipole g-modes in the Kepler 3.2\sim3.2 M_\odot target KIC 7760680 to discriminate between these two models. We favor the uniformly rotating model, which fully satisfies all observational constraints. Therefore, efficient angular momentum transport by additional mechanisms such as internal gravity waves, heat-driven modes and magnetic field is needed during early main sequence evolution of massive stars.Comment: Proceedings of "Seismology of the Sun and the Distant Stars 2016". Editors: M\'ario J. P. F. G. Monteiro, Margarida S. Cunha, Jo\~ao Miguel T. Ferreir

    The BRITE-Constellation Nanosatellite Space Mission And Its First Scientific Results

    Full text link
    The BRIght Target Explorer (BRITE) Constellation is the first nanosatellite mission applied to astrophysical research. Five satellites in low-Earth orbits perform precise optical two-colour photometry of the brightest stars in the night sky. BRITE is naturally well suited for variability studies of hot stars. This contribution describes the basic outline of the mission and some initial problems that needed to be overcome. Some information on BRITE data products, how to access them, and how to join their scientific exploration is provided. Finally, a brief summary of the first scientific results obtained by BRITE is given.Comment: 5 pages, 1 figure, to appear in the proceedings of "Seismology of the Sun and the Distant Stars 2016. Using Today's Successes to Prepare the Future. Joint TASC2/KASC9 Workshop - SPACEINN/HELAS8 Conference", ed. M. J. P. F. G. Monteir

    Stellar magnetic activity and exoplanets

    Full text link
    It has been proposed that magnetic activity could be enhanced due to interactions between close-in massive planets and their host stars. In this article, I present a brief overview of the connection between stellar magnetic activity and exoplanets. Stellar activity can be probed in chromospheric lines, coronal emission, surface spot coverage, etc. Since these are manifestations of stellar magnetism, these measurements are often used as proxies for the magnetic field of stars. Here, instead of focusing on the magnetic proxies, I overview some recent results of magnetic field measurements using spectropolarimetric observations. Firstly, I discuss the general trends found between large-scale magnetism, stellar rotation, and coronal emission and show that magnetism seems to be correlated to the internal structure of the star. Secondly, I overview some works that show evidence that exoplanets could (or not) act as to enhance the activity of their host stars.Comment: Based on the review talk presented at "Seismology of the Sun and the Distant Stars 2016", July 2016, Azores, Portugal. To appear in the Proceedings "Seismology of the Sun and the Distant Stars 2016" Eds. Mario J. P. F. G. Monteiro, Margarida S. Cunha, Joao Miguel T. Ferreir

    Galactic Archaeology with TESS: Prospects for Testing the Star Formation History in the Solar Neighbourhood

    Get PDF
    A period of quenching between the formation of the thick and thin disks of the Milky Way has been recently proposed to explain the observed age-[{\alpha}/Fe] distribution of stars in the solar neighbourhood. However, robust constraints on stellar ages are currently available for only a limited number of stars. The all-sky survey TESS (Transiting Exoplanet Survey Satellite) will observe the brightest stars in the sky and thus can be used to investigate the age distributions of stars in these components of the Galaxy via asteroseismology, where previously this has been difficult using other techniques. The aim of this preliminary study was to determine whether TESS will be able to provide evidence for quenching periods during the star formation history of the Milky Way. Using a population synthesis code, we produced populations based on various stellar formation history models and limited the analysis to red-giant-branch stars. We investigated the mass-Galactic-disk-height distributions, where stellar mass was used as an age proxy, to test for whether periods of quenching can be observed by TESS. We found that even with the addition of 15% noise to the inferred masses, it will be possible for TESS to find evidence for/against quenching periods suggested in the literature (e.g. between 7 and 9 Gyr ago), therefore providing stringent constraints on the formation and evolution of the Milky Way.Comment: 4 pages, 3 figures, proceedings of "Seismology of the Sun and the Distant Stars 2016", Mario J. P. F. G. Monteiro, Margarida S. Cunha, Joao Miguel T. Ferreira editor
    corecore