20 research outputs found

    Freely-Decaying, Homogeneous Turbulence Generated by Multi-scale Grids

    Full text link
    We investigate wind tunnel turbulence generated by both conventional and multi-scale grids. Measurements were made in a tunnel which has a large test-section, so that possible side wall effects are very small and the length assures that the turbulence has time to settle down to a homogeneous shear-free state. The conventional and multi-scale grids were all designed to produce turbulence with the same integral scale, so that a direct comparison could be made between the different flows. Our primary finding is that the behavior of the turbulence behind our multi-scale grids is virtually identical to that behind the equivalent conventional grid. In particular, all flows exhibit a power-law decay of energy, u2∼t−nu^2 \sim t^{-n}, where nn is very close to the classical Saffman exponent of n=6/5n = 6/5. Moreover, all spectra exhibit classical Kolmogorov scaling, with the spectra collapsing on the integral scales at small kk, and on the Kolmogorov micro-scales at large kk. Our results are at odds with some other experiments performed on similar multi-scale grids, where significantly higher energy decay exponents and turbulence levels have been reported.Comment: 19 pages, 18 figure

    Evolution of turbulence and in-plane vortices in the near field flow behind multi-scale planar grids

    Get PDF
    In this experimental work, we carry out detailed two-dimensional particle image velocimetry investigations for the near field wakes behind a conventional and two multi-scale planar grids, using stitched camera fields of view. Statistical independent measurements are conducted focusing on the first few mesh distances downstream of the grid. It is found that the multiple integral length scales originated from the grids loose their importance on the turbulence development after about three mesh distances downstream, much earlier than the distance where the turbulence becomes homogeneous. The largest eddy size, represented by the integral length scales, does not show clear differences in its growth rate among the three grids after an initial development of three times the largest grid size downstream. Nevertheless, when examining individual vortex behaviours using conditional averaging and filtering processes, clear differences are found. The grids are found to have different decay rates of peak vorticity and projected vortex strengths. Despite these differences, the in-plane vorticity correlation function reveals that the mean vortex shape of all the grids shows a universal near-Gaussian pattern which does not change much as the turbulence decays

    Probability density function of turbulent velocity fluctuations in rough-wall boundary layer

    Full text link
    The probability density function of single-point velocity fluctuations in turbulence is studied systematically using Fourier coefficients in the energy-containing range. In ideal turbulence where energy-containing motions are random and independent, the Fourier coefficients tend to Gaussian and independent of each other. Velocity fluctuations accordingly tend to Gaussian. However, if energy-containing motions are intermittent or contaminated with bounded-amplitude motions such as wavy wakes, the Fourier coefficients tend to non-Gaussian and dependent of each other. Velocity fluctuations accordingly tend to non-Gaussian. These situations are found in our experiment of a rough-wall boundary layer.Comment: 6 pages, to appear in Physical Review

    Renormalization group in the infinite-dimensional turbulence: third-order results

    Full text link
    The field theoretic renormalization group is applied to the stochastic Navier-Stokes equation with the stirring force correlator of the form k^(4-d-2\epsilon) in the d-dimensional space, in connection with the problem of construction of the 1/d expansion for the fully developed fluid turbulence beyond the scope of the standard epsilon expansion. It is shown that in the large-d limit the number of the Feynman diagrams for the Green function (linear response function) decreases drastically, and the technique of their analytical calculation is developed. The main ingredients of the renormalization group approach -- the renormalization constant, beta function and the ultraviolet correction exponent omega, are calculated to order epsilon^3 (three-loop approximation). The two-point velocity-velocity correlation function, the Kolmogorov constant C_K in the spectrum of turbulent energy and the inertial-range skewness factor S are calculated in the large-d limit to third order of the epsilon expansion. Surprisingly enough, our results for C_K are in a reasonable agreement with the existing experimental estimates.Comment: 30 pages with EPS figure

    Is grid turbulence Saffman turbulence?

    No full text
    corecore