301 research outputs found
Non-abelian Harmonic Oscillators and Chiral Theories
We show that a large class of physical theories which has been under
intensive investigation recently, share the same geometric features in their
Hamiltonian formulation. These dynamical systems range from harmonic
oscillations to WZW-like models and to the KdV dynamics on . To the
same class belong also the Hamiltonian systems on groups of maps.
The common feature of these models are the 'chiral' equations of motion
allowing for so-called chiral decomposition of the phase space.Comment: 1
Measuring velocity of sound with nuclear resonant inelastic x-ray scattering
Nuclear resonant inelastic x-ray scattering is used to measure the projected
partial phonon density of states of materials. A relationship is derived
between the low-energy part of this frequency distribution function and the
sound velocity of materials. Our derivation is valid for harmonic solids with
Debye-like low-frequency dynamics. This method of sound velocity determination
is applied to elemental, composite, and impurity samples which are
representative of a wide variety of both crystalline and noncrystalline
materials. Advantages and limitations of this method are elucidated
Successful desensitization with human insulin in a patient with an insulin allergy and hypersensitivity to protamine: a case report
<p>Abstract</p> <p>Introduction</p> <p>Insulin allergy may occur in patients treated with subcutaneous applications of insulin preparations. Besides additives in the insulin preparation such as protamine, cresol, and phenol, the insulin molecule itself may be the cause of the allergy. In the latter case, therapeutic options are rare.</p> <p>Case presentation</p> <p>A 68-year-old man with poorly controlled type 2 diabetes mellitus received different insulin preparations subcutaneously while on oral medication. Six to eight hours after each subcutaneous application, he developed pruritic plaques with a diameter of >15 cm at the injection sites that persisted for several days. Allergologic testing revealed positive reactions against every insulin preparation and against protamine. Investigation of serum samples demonstrated IgG antibodies against human and porcine insulin. We treated the patient with human insulin using an ultra-rush protocol beginning with 0.004 IU and a rapid augmentation in dose up to 5 IU. Therapy was accompanied by antihistamine therapy. Subsequent conversion to therapy with glargine insulin (6 IE twice daily) was well-tolerated.</p> <p>Conclusion</p> <p>As reported in this case, desensitization with subcutaneously administered human insulin using an ultra-rush protocol in patients with an insulin allergy may present an easy form of therapy that is successful within a few days.</p
Triphala inhibits both in vitro and in vivo xenograft growth of pancreatic tumor cells by inducing apoptosis
<p>Abstract</p> <p>Background</p> <p>Triphala is commonly used in Ayurvedic medicine to treat variety of diseases; however its mechanism of action remains unexplored. This study elucidates the molecular mechanism of Triphala against human pancreatic cancer in the cellular and in vivo model.</p> <p>Methods</p> <p>Growth-inhibitory effects of Triphala were evaluated in Capan-2, BxPC-3 and HPDE-6 cells by Sulphoradamine-B assay. Apoptosis was determined by cell death assay and western blotting. Triphala was administered orally to nude mice implanted with Capan-2 xenograft. Tumors were analyzed by immunohistochemistry and western blotting.</p> <p>Results</p> <p>Exposure of Capan-2 cells to the aqueous extract of Triphala for 24 h resulted in the significant decrease in the survival of cells in a dose-dependent manner with an IC50 of about 50 μg/ml. Triphala-mediated reduced cell survival correlated with induction of apoptosis, which was associated with reactive oxygen species (ROS) generation. Triphala-induced apoptosis was linked with phosphorylation of p53 at Ser-15 and ERK at Thr-202/Tyr-204 in Capan-2 cells. Above mentioned effects were significantly blocked when the cells were pretreated with an antioxidant N-acetylcysteine (NAC), suggesting the involvement of ROS generation. Pretreatment of cells with pifithrin-α or U0126, specific inhibitors of p53 or MEK-1/2, significantly attenuated Triphala-induced apoptosis. Moreover, NAC or U0126 pretreatment significantly attenuated Triphala-induced p53 transcriptional activity. Similarly, Triphala induced apoptosis in another pancreatic cancer cell line BxPC-3 by activating ERK. On the other hand, Triphala failed to induce apoptosis or activate ERK or p53 in normal human pancreatic ductal epithelial (HPDE-6) cells. Further, oral administration of 50 mg/kg or 100 mg/kg Triphala in PBS, 5 days/week significantly suppressed the growth of Capan-2 pancreatic tumor-xenograft. Reduced tumor-growth in Triphala fed mice was due to increased apoptosis in the tumors cells, which was associated with increased activation of p53 and ERK.</p> <p>Conclusion</p> <p>Our preclinical studies demonstrate that Triphala is effective in inhibiting the growth of human pancreatic cancer cells in both cellular and in vivo model. Our data also suggests that the growth inhibitory effects of Triphala is mediated by the activation of ERK and p53 and shows potential for the treatment and/or prevention of human pancreatic cancer.</p
Venous gas embolism as a predictive tool for improving CNS decompression safety
A key process in the pathophysiological steps leading to decompression sickness (DCS) is the formation of inert gas bubbles. The adverse effects of decompression are still not fully understood, but it seems reasonable to suggest that the formation of venous gas emboli (VGE) and their effects on the endothelium may be the central mechanism leading to central nervous system (CNS) damage. Hence, VGE might also have impact on the long-term health effects of diving. In the present review, we highlight the findings from our laboratory related to the hypothesis that VGE formation is the main mechanism behind serious decompression injuries. In recent studies, we have determined the impact of VGE on endothelial function in both laboratory animals and in humans. We observed that the damage to the endothelium due to VGE was dose dependent, and that the amount of VGE can be affected both by aerobic exercise and exogenous nitric oxide (NO) intervention prior to a dive. We observed that NO reduced VGE during decompression, and pharmacological blocking of NO production increased VGE formation following a dive. The importance of micro-nuclei for the formation of VGE and how it can be possible to manipulate the formation of VGE are discussed together with the effects of VGE on the organism. In the last part of the review we introduce our thoughts for the future, and how the enigma of DCS should be approached
“Where, O Death, Is Thy Sting?” A Brief Review of Apoptosis Biology
Apoptosis was a term introduced in 1972 to distinguish a mode of cell death with characteristic morphology and apparently regulated, endogenously driven mechanisms. The effector processes responsible for apoptosis are now mostly well known, involving activation of caspases and Bcl2 family members in response to a wide variety of physiological and injury-induced signals. The factors that lead of the decision to activate apoptosis as opposed to adaptive responses to such signals (e.g. autophagy, cycle arrest, protein synthesis shutoff) are less well understood, but the intranuclear Promyelocytic Leukaemia Body (PML body) may create a local microenvironment in which the audit of DNA damage may occur, informed by the extent of the damage, the adequacy of its repair and other aspects of cell status
Cellular Basis of Tissue Regeneration by Omentum
The omentum is a sheet-like tissue attached to the greater curvature of the stomach and contains secondary lymphoid organs called milky spots. The omentum has been used for its healing potential for over 100 years by transposing the omental pedicle to injured organs (omental transposition), but the mechanism by which omentum helps the healing process of damaged tissues is not well understood. Omental transposition promotes expansion of pancreatic islets, hepatocytes, embryonic kidney, and neurons. Omental cells (OCs) can be activated by foreign bodies in vivo. Once activated, they become a rich source for growth factors and express pluripotent stem cell markers. Moreover, OCs become engrafted in injured tissues suggesting that they might function as stem cells
KRIT1 Regulates the Homeostasis of Intracellular Reactive Oxygen Species
KRIT1 is a gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries that predispose to seizures, focal neurological deficits, and fatal intracerebral hemorrhage. Comprehensive analysis of the KRIT1 gene in CCM patients has suggested that KRIT1 functions need to be severely impaired for pathogenesis. However, the molecular and cellular functions of KRIT1 as well as CCM pathogenesis mechanisms are still research challenges. We found that KRIT1 plays an important role in molecular mechanisms involved in the maintenance of the intracellular Reactive Oxygen Species (ROS) homeostasis to prevent oxidative cellular damage. In particular, we demonstrate that KRIT1 loss/down-regulation is associated with a significant increase in intracellular ROS levels. Conversely, ROS levels in KRIT1−/− cells are significantly and dose-dependently reduced after restoration of KRIT1 expression. Moreover, we show that the modulation of intracellular ROS levels by KRIT1 loss/restoration is strictly correlated with the modulation of the expression of the antioxidant protein SOD2 as well as of the transcriptional factor FoxO1, a master regulator of cell responses to oxidative stress and a modulator of SOD2 levels. Furthermore, we show that the KRIT1-dependent maintenance of low ROS levels facilitates the downregulation of cyclin D1 expression required for cell transition from proliferative growth to quiescence. Finally, we demonstrate that the enhanced ROS levels in KRIT1−/− cells are associated with an increased cell susceptibility to oxidative DNA damage and a marked induction of the DNA damage sensor and repair gene Gadd45α, as well as with a decline of mitochondrial energy metabolism. Taken together, our results point to a new model where KRIT1 limits the accumulation of intracellular oxidants and prevents oxidative stress-mediated cellular dysfunction and DNA damage by enhancing the cell capacity to scavenge intracellular ROS through an antioxidant pathway involving FoxO1 and SOD2, thus providing novel and useful insights into the understanding of KRIT1 molecular and cellular functions
- …