Abstract

We show that a large class of physical theories which has been under intensive investigation recently, share the same geometric features in their Hamiltonian formulation. These dynamical systems range from harmonic oscillations to WZW-like models and to the KdV dynamics on DiffoS1Diff_oS^1. To the same class belong also the Hamiltonian systems on groups of maps. The common feature of these models are the 'chiral' equations of motion allowing for so-called chiral decomposition of the phase space.Comment: 1

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019