54 research outputs found

    Vortex lattice studies in CeCoIn5 with H perpendicular to c

    Full text link
    We present small angle neutron scattering studies of the vortex lattice (VL) in CeCoIn5 with magnetic fields applied parallel (H) to the antinodal [100] and nodal [110] directions. For H || [100], a single VL orientation is observed, while a 90 degree reorientation transition is found for H || [110]. For both field orientations and VL configurations we find a distorted hexagonal VL with an anisotropy, Gamma = 2.0 +/- 0.05. The VL form factor shows strong Pauli paramagnetic effects similar to what have previously been reported for H || [001]. At high fields, above which the upper critical field (Hc2) becomes a first-order transition, an increased disordering of the VL is observed.Comment: 5 pages, 4 figure

    Observations of Pauli Paramagnetic Effects on the Flux Line Lattice in CeCoIn5

    Full text link
    From small-angle neutron scattering studies of the flux line lattice (FLL) in CeCoIn5, with magnetic field applied parallel to the crystal c-axis, we obtain the field- and temperature-dependence of the FLL form factor, which is a measure of the spatial variation of the field in the mixed state. We extend our earlier work [A.D. Bianchi et al. 2008 Science 319, 177] to temperatures up to 1250 mK. Over the entire temperature range, paramagnetism in the flux line cores results in an increase of the form factor with field. Near H_c2 the form factor decreases again, and our results indicate that this fall-off extends outside the proposed FFLO region. Instead, we attribute the decrease to a paramagnetic suppression of Cooper pairing. At higher temperatures, a gradual crossover towards more conventional mixed state behavior is observed.Comment: Submitted to New Journal of Physics, 13 pages, 4 figure

    Antiferromagnetic ordering in a 90 K copper oxide superconductor

    Full text link
    Using elastic neutron scattering, we evidence a commensurate antiferromagnetic Cu(2) order (AF) in the superconducting (SC) high-Tc\rm T_c cuprate YBa2(Cu1yCoy)3O7+δ\rm YBa_2(Cu_{1-y}Co_y)_3O_{7+\delta} (y=0.013, Tc\rm T_c=93 K). As in the Co-free system, the spin excitation spectrum is dominated by a magnetic resonance peak at 41 meV but with a reduced spectral weight. The substitution of Co thus leads to a state where AF and SC cohabit showing that the CuO2_2 plane is a highly antiferromagnetically polarizable medium even for a sample where Tc_c remains optimum.Comment: 3 figure

    In situ uniaxial pressure cell for x-ray and neutron scattering experiments

    Full text link
    We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes

    In situ uniaxial pressure cell for x-ray and neutron scattering experiments

    Get PDF
    We present an in situ uniaxial pressure device optimized for small angle x-ray and neutron scattering experiments at low-temperatures and high magnetic fields. A stepper motor generates force, which is transmitted to the sample via a rod with an integrated transducer that continuously monitors the force. The device has been designed to generate forces up to 200 N in both compressive and tensile configurations, and a feedback control allows operating the system in a continuous-pressure mode as the temperature is changed. The uniaxial pressure device can be used for various instruments and multiple cryostats through simple and exchangeable adapters. It is compatible with multiple sample holders, which can be easily changed depending on the sample properties and the desired experiment and allow rapid sample changes

    Local structure study about Co in YBa2_2(Cu1x_{1-x}Cox_x)3_3O7δ_{7-\delta} thin films using polarized XAFS

    Full text link
    We have studied the local structure around Co in YBa2_2(Cu1x_{1-x}Cox_x)3_3O7δ_{7-\delta} thin films with three different concentrations: x=0.07, 0.10, 0.17, and in a PrBa2_2(Cu1x_{1-x}Cox_x)3_3O7δ_{7-\delta} thin film of concentration x=0.05 using the X-ray Absorption Fine Structure (XAFS) technique. Data were collected at the Co KK-edge with polarizations both parallel and perpendicular to the film surface. We find that the oxygen neighbors are well ordered and shortened in comparison with YBCO Cu-O values to 1.80 \AA{} and 1.87 \AA{} in the cc-axis and abab-plane, respectively. A comparison of further neighbors in the thin film and powder data show that these peaks in the film are suppressed in amplitude relative to the powder samples, which suggests there is more disorder and/or distortions of the Co environment present in the thin films.Comment: 14 pages; To be submitted to Phys. Rev.

    High Pressure Effects on Superconductivity

    Full text link
    The review is devoted to a discussion of the effects of high pressure imposed on superconducting materials. Low-temperature superconductors, high-temperature superconducting cuprates, and some unconventional superconducting compounds are investigated. Experimental as well as theoretical results regarding the pressure effects on Tc and other interesting properties are summarized.Comment: To be published in: "Frontiers in Superconducting Materials", Edt. A. Narlikar, Springer Verla

    Mg2CoH5 rt

    No full text

    Properties of Formal Low-Valence Transition Metal — Hydrogen Complexes in Mg 2

    No full text
    corecore