142 research outputs found
FDG uptake, a surrogate of tumour hypoxia?
Introduction Tumour hyperglycolysis is driven by activation of hypoxia-inducible factor-1 (HIF-1) through tumour hypoxia. Accordingly, the degree of 2-fluro-2-deoxy-D-glucose (FDG) uptake by tumours might indirectly reflect the level of hypoxia, obviating the need for more specific radiopharmaceuticals for hypoxia imaging.
Discussion In this paper, available data on the relationship between hypoxia and FDG uptake by tumour tissue in vitro and in vivo are reviewed. In pre-clinical in vitro studies, acute hypoxia was consistently shown to increase FDG uptake by normal and tumour cells within a couple of hours after onset with mobilisation or modification of glucose transporters optimising glucose uptake, followed by a delayed response with increased rates of transcription of GLUT mRNA. In pre-clinical imaging studies on chronic hypoxia that compared FDG uptake by tumours grown in rat or mice to uptake by FMISO, the pattern of normoxic and hypoxic regions within the human tumour xenografts, as imaged by FMISO, largely correlated with glucose metabolism although minor locoregional differences could not be excluded. In the clinical setting, data are limited and discordant.
Conclusion Further evaluation of FDG uptake by various tumour types in relation to intrinsic and bioreductive markers of hypoxia and response to radiotherapy or hypoxia-dependent drugs is needed to fully assess its application as a marker of hypoxia in the clinical setting
PET Imaging of Soluble Yttrium-86-Labeled Carbon Nanotubes in Mice
The potential medical applications of nanomaterials are shaping the landscape of the nanobiotechnology field and driving it forward. A key factor in determining the suitability of these nanomaterials must be how they interface with biological systems. Single walled carbon nanotubes (CNT) are being investigated as platforms for the delivery of biological, radiological, and chemical payloads to target tissues. CNT are mechanically robust graphene cylinders comprised of sp(2)-bonded carbon atoms and possessing highly regular structures with defined periodicity. CNT exhibit unique mechanochemical properties that can be exploited for the development of novel drug delivery platforms. In order to evaluate the potential usefulness of this CNT scaffold, we undertook an imaging study to determine the tissue biodistribution and pharmacokinetics of prototypical DOTA-functionalized CNT labeled with yttrium-86 and indium-111 ((86)Y-CNT and (111)In-CNT, respectively) in a mouse model.The (86)Y-CNT construct was synthesized from amine-functionalized, water-soluble CNT by covalently attaching multiple copies of DOTA chelates and then radiolabeling with the positron-emitting metal-ion, yttrium-86. A gamma-emitting (111)In-CNT construct was similarly prepared and purified. The constructs were characterized spectroscopically, microscopically, and chromatographically. The whole-body distribution and clearance of yttrium-86 was characterized at 3 and 24 hours post-injection using positron emission tomography (PET). The yttrium-86 cleared the blood within 3 hours and distributed predominantly to the kidneys, liver, spleen and bone. Although the activity that accumulated in the kidney cleared with time, the whole-body clearance was slow. Differential uptake in these target tissues was observed following intravenous or intraperitoneal injection.The whole-body PET images indicated that the major sites of accumulation of activity resulting from the administration of (86)Y-CNT were the kidney, liver, spleen, and to a much less extent the bone. Blood clearance was rapid and could be beneficial in the use of short-lived radionuclides in diagnostic applications
Molecular imaging of hypoxia with radiolabelled agents
Tissue hypoxia results from an inadequate supply of oxygen (O2) that compromises biological functions. Structural and functional abnormalities of the tumour vasculature together with altered diffusion conditions inside the tumour seem to be the main causes of tumour hypoxia. Evidence from experimental and clinical studies points to a role for tumour hypoxia in tumour propagation, resistance to therapy and malignant progression. This has led to the development of assays for the detection of hypoxia in patients in order to predict outcome and identify patients with a worse prognosis and/or patients that would benefit from appropriate treatments. A variety of invasive and non-invasive approaches have been developed to measure tumour oxygenation including oxygen-sensitive electrodes and hypoxia marker techniques using various labels that can be detected by different methods such as positron emission tomography (PET), single photon emission computed tomography (SPECT), magnetic resonance imaging (MRI), autoradiography and immunohistochemistry. This review aims to give a detailed overview of non-invasive molecular imaging modalities with radiolabelled PET and SPECT tracers that are available to measure tumour hypoxia
The role of multi-slice computed tomography in stable angina management: a current perspective
Contrast-enhanced CT coronary angiography (CTCA) has evolved as a reliable alternative imaging modality technique and may be the preferred initial diagnostic test in patients with stable angina with intermediate pre-test probability of CAD. However, because CTCA is moderately predictive for indicating the functional significance of a lesion, the combination of anatomic and functional imaging will become increasingly important. The technology will continue to improve with better spatial and temporal resolution at low radiation exposure, and CTCA may eventually replace invasive coronary angiography. The establishment of the precise role of CTCA in the diagnosis and management of patients with stable angina requires high-quality randomised study designs with clinical outcomes as a primary outcome
Importance of intra-therapy single-photon emission tomographic imaging in calculating tumour dosimetry for a lymphoma patient
The dosimetry for two, similarly sized tumours in a lymphoma patient being treated with non-bone marrow ablative, monoclonal antibody therapy is reported. The 45-year-old man was infused with 2.48 GBq (67 mCi) of 131 I-labelled MB-1. Prior to therapy, a time series of diagnostic conjugate-view images and a radionuclide transmission scan were obtained and processed to obtain time-activity curves. Starting 2 days after the therapeutic infusion of radioactivity, a second conjugate-view time series was obtained. At that time, a quantitative single-photon emission tomography (SPET) acquisition was also carried out. Pre- and post-therapy X-ray computed tomography scans demonstrated a percentage reduction in volume for the right tumour which was 3.8 times that for the left tumour. In contrast, diagnostic conjugate views by themselves estimated the absorbed dose to be the same for the two tumours. Addition of therapy conjugate-view data increased the right-over-left ratio but only to 1.22. Normalizing either time-activity series by the intra-therapy SPET results increased the ratio to greater than 1.5. We assume here that a differential dose is correct according to the differential tumour shirnkage. One can further assume that the largest ratio corresponds most certainly to the most accurate dosimetric method. Other assumptions are possible. While additional study is essential, data from this patient suggest that the preferred dosimetric method is intra-therapy SPET normalization of either time series.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46832/1/259_2005_Article_BF02258433.pd
Gamma probes and their use in tumor detection in colorectal cancer
The purpose of this article is to summarize the role of gamma probes in intraoperative tumor detection in patients with colorectal cancer (CRC), as well as provide basic information about the physical and practical characteristics of the gamma probes, and the radiopharmaceuticals used in gamma probe tumor detection. In a significant portion of these studies, radiolabeled monoclonal antibodies (Mabs), particularly 125I labeled B72.3 Mab that binds to the TAG-72 antigen, have been used to target tumor. Studies have reported that intraoperative gamma probe radioimmunodetection helps surgeons to localize primary tumor, clearly delineate its resection margins and provide immediate intraoperative staging. Studies also have emphasized the value of intraoperative gamma probe radioimmunodetection in defining the extent of tumor recurrence and finding sub-clinical occult tumors which would assure the surgeons that they have completely removed the tumor burden. However, intraoperative gamma probe radioimmunodetection has not been widely adapted among surgeons because of some constraints associated with this technique. The main difficulty with this technique is the long period of waiting time between Mab injection and surgery. The technique is also laborious and costly. In recent years, Fluorine-18-2-fluoro-2-deoxy-D-glucose (18F-FDG) use in gamma probe tumor detection surgery has renewed interest among surgeons. Preliminary studies during surgery have demonstrated that use of FDG in gamma probe tumor detection during surgery is feasible and useful
- …