2 research outputs found

    Additional file 2: of Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine

    No full text
    Figure S1. Effect of MSCs on platelet adhesion and aggregation under shear flow conditions. To assess effect of MSCs on platelet activation under shear flow conditions, we performed microfluidic experiments using a pneumatically driven channel system (BioFlux, San Francisco, CA, USA) mounted on an inverted microscope capable of live cell reflectance interference contrast microscopy (RICM) as described previously [31]. Briefly, channels were coated with 10 μg/cm2 fibronectin (from human plasma F2006; Sigma Aldrich, St. Louis, MO, USA). The coated channels were filled with 300 μl of native whole blood with and without 1.5 × 105 BM-MSCs upon hematocrit adjustment and perfused with a constant shear stress of 5 dyne/cm2. At indicated points in time, RICM photographs of channel footprints were taken and analyzed by counting the number of adherent/aggregated platelets. BM-MSCs n = 3. (TIF 1135 kb

    Additional file 5: of Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine

    No full text
    Figure S4. Effect of MSCs on platelet activation using different agonists and pathway inhibitors. A, B Effect of 105 LA-MSCs/ml on platelet activation after stimulation with different agonists ADP, TRAP-6 and U46619 (n = 4). Expression of two different activation markers shown: A CD62P and B PAC-1 binding. *p < 0.05. C, D Effect of AK4 and indomethacin on platelet inhibition by 5 × 105 BM-MSCs/ml. Platelets stimulated with TRAP-6. x axis, PAC-1 fluorescence intensity; y, axis, platelet count. One of two experiments shown: C AK4 to block CD62P and D MSC preculture in indomethacin to block COX. (TIF 176 kb
    corecore