353 research outputs found
Melting of a p-H2 monolayer on a lithium substrate
Adsorption of para-hydrogen films on Alkali metals substrates at low
temperature is studied theoretically by means of Path Integral Monte Carlo
simulations. Realistic potentials are utilized to model the interaction between
two para-hydrogen molecules, as well as between a para-hydrogenmolecule and the
substrate, assumed smooth. Results show that adsorption of para-hydrogen on a
Lithium substrate, the most attractive among the Alkali, occurs through
completion of successive solid adlayers. Each layer has a two-dimensional
density approximatley equal 0.070 inverse square Angstroms. A solid
para-hydrogen monolayer displays a higher degree of confinement, in the
direction perpendicular to the substrate, than a monolayer Helium film, and has
a melting temperature of about 6.5 K. The other Alkali substrates are not
attractive enough to be wetted by molecular hydrogen at low temperature. No
evidence of a possible superfluid phase of para-hydrogen is seen in these
systems.Comment: Scales on the y-axis in Figs. 4,5 and 7 are off by a factor 2 in
published version; corrected her
Conditioning bounds for traveltime tomography in layered media
This paper revisits the problem of recovering a smooth, isotropic, layered
wave speed profile from surface traveltime information. While it is classic
knowledge that the diving (refracted) rays classically determine the wave speed
in a weakly well-posed fashion via the Abel transform, we show in this paper
that traveltimes of reflected rays do not contain enough information to recover
the medium in a well-posed manner, regardless of the discretization. The
counterpart of the Abel transform in the case of reflected rays is a Fredholm
kernel of the first kind which is shown to have singular values that decay at
least root-exponentially. Kinematically equivalent media are characterized in
terms of a sequence of matching moments. This severe conditioning issue comes
on top of the well-known rearrangement ambiguity due to low velocity zones.
Numerical experiments in an ideal scenario show that a waveform-based model
inversion code fits data accurately while converging to the wrong wave speed
profile
Forces between electric charges in motion: Rutherford scattering, circular Keplerian orbits, action-at-a-distance and Newton's third law in relativistic classical electrodynamics
Standard formulae of classical electromagnetism for the forces between
electric charges in motion derived from retarded potentials are compared with
those obtained from a recently developed relativistic classical electrodynamic
theory with an instantaneous inter-charge force. Problems discussed include
small angle Rutherford scattering, Jackson's recent `torque paradox' and
circular Keplerian orbits. Results consistent with special relativity are
obtained only with an instantaneous interaction. The impossiblity of stable
circular motion with retarded fields in either classical electromagnetism or
Newtonian gravitation is demonstrated.Comment: 26 pages, 5 figures. QED and special relativity forbid retarded
electromagnetic forces. See also physics/0501130. V2 has typos corrected,
minor text modifications and updated references. V3 has further typos removed
and added text and reference
13C labeling experiments at metabolic nonstationary conditions: An exploratory study
<p>Abstract</p> <p>Background</p> <p>Stimulus Response Experiments to unravel the regulatory properties of metabolic networks are becoming more and more popular. However, their ability to determine enzyme kinetic parameters has proven to be limited with the presently available data. In metabolic flux analysis, the use of <sup>13</sup>C labeled substrates together with isotopomer modeling solved the problem of underdetermined networks and increased the accuracy of flux estimations significantly.</p> <p>Results</p> <p>In this contribution, the idea of increasing the information content of the dynamic experiment by adding <sup>13</sup>C labeling is analyzed. For this purpose a small example network is studied by simulation and statistical methods. Different scenarios regarding available measurements are analyzed and compared to a non-labeled reference experiment. Sensitivity analysis revealed a specific influence of the kinetic parameters on the labeling measurements. Statistical methods based on parameter sensitivities and different measurement models are applied to assess the information gain of the labeled stimulus response experiment.</p> <p>Conclusion</p> <p>It was found that the use of a (specifically) labeled substrate will significantly increase the parameter estimation accuracy. An overall information gain of about a factor of six is observed for the example network. The information gain is achieved from the specific influence of the kinetic parameters towards the labeling measurements. This also leads to a significant decrease in correlation of the kinetic parameters compared to an experiment without <sup>13</sup>C-labeled substrate.</p
On the existence of supersolid helium-4 monolayer films
Extensive Monte Carlo simulations of helium-4 monolayer films adsorbed on
weak substrates have been carried out, aimed at ascertaining the possible
occurrence of a quasi-two-dimensional supersolid phase. Only crystalline films
not registered with underlying substrates are considered. Numerical results
yield strong evidence that helium-4 will not form a supersolid film on {any}
substrate strong enough to stabilize a crystalline layer. On weaker substrates,
continuous growth of a liquid film takes place
Analysis of lead oxide (PbO) layers for direct conversion X-ray detection
Lead oxide (PbO) is a candidate direct conversion material for medical X-ray applications. We produced various samples and detectors with thick PbO layers. X-ray performance data such as dark current, charge generation yield and temporal behavior were evaluated on small samples. The influence of the metal contacts was studied in detail. We also covered large a-Si thin-film transistor (TFT)-plates with PbO. Imaging results from a large detector with an active area of 18 cm × 20 cm are presented. The detector has 960 × 1080 pixels with a pixel pitch of 184 ?m. The modulation transfer function at the Nyquist frequency of 2.72 linepairs/mm is 50%. Finally, a full size X-ray image is presented
Quantum Fluctuations Driven Orientational Disordering: A Finite-Size Scaling Study
The orientational ordering transition is investigated in the quantum
generalization of the anisotropic-planar-rotor model in the low temperature
regime. The phase diagram of the model is first analyzed within the mean-field
approximation. This predicts at a phase transition from the ordered to
the disordered state when the strength of quantum fluctuations, characterized
by the rotational constant , exceeds a critical value . As a function of temperature, mean-field theory predicts a range of
values of where the system develops long-range order upon cooling, but
enters again into a disordered state at sufficiently low temperatures
(reentrance). The model is further studied by means of path integral Monte
Carlo simulations in combination with finite-size scaling techniques,
concentrating on the region of parameter space where reentrance is predicted to
occur. The phase diagram determined from the simulations does not seem to
exhibit reentrant behavior; at intermediate temperatures a pronounced increase
of short-range order is observed rather than a genuine long-range order.Comment: 27 pages, 8 figures, RevTe
Quantum melting of incommensurate domain walls in two dimensions
Quantum fluctuations of periodic domain-wall arrays in two-dimensional
incommensurate states at zero temperature are investigated using the elastic
theory in the vicinity of the commensurate-incommensurate transition point.
Both stripe and honeycomb structures of domain walls with short-range
interactions are considered. It is revealed that the stripes melt and become a
stripe liquid in a large-wall-spacing (low-density) region due to dislocations
created by quantum fluctuations. This quantum melting transition is of second
order and characterized by the three-dimensional XY universality class.
Zero-point energies of the stripe and honeycomb structures are calculated. As a
consequence of these results, phase diagrams of the domain-wall solid and
liquid phases in adsorbed atoms on graphite are discussed for various
domain-wall masses. Quantum melting of stripes in the presence of long-range
interactions that fall off as power laws is also studied. These results are
applied to incommensurate domain walls in two-dimensional adsorbed atoms on
substrates and in doped antiferromagnets, e.g. cuprates and nickelates.Comment: 11 pages, 5 figure
Recommended from our members
Real time visualization of Quantum Molecular Dynamics
this demonstration displays results of a Quantum Molecular Dynamics (QMD) simulation of the metal cluster Li{sub 6} running on the Intel Touchstone Delta at Caltech
- …