468 research outputs found

    Micromechanical fatigue experiments for validation of microstructure-sensitive fatigue simulation models

    Get PDF
    Crack initiation governs high cycle fatigue life and is sensitive to microstructural details. While corresponding microstructure-sensitive models are available, their validation is difficult. We propose a validation framework where a fatigue test is mimicked in a sub-modeling simulation by embedding the measured microstructure into the specimen geometry and adopting an approximation of the experimental boundary conditions. Exemplary, a phenomenological crystal plasticity model was applied to predict deformation in ferritic steel (EN1.4003). Hotspots in commonly used fatigue indicator parameter maps are compared with damage segmented from micrographs. Along with the data, the framework is published for benchmarking future micromechanical fatigue models

    Umbilical Cord Mercury Concentration as Biomarker of Prenatal Exposure to Methylmercury

    Get PDF
    Biomarkers are often applied to assess prenatal exposure to methylmercury in research and surveillance. In a prospective study in the Faroe Islands, the main exposure biomarkers were the mercury concentrations in cord blood and maternal hair obtained at parturition. We have now supplemented these exposure biomarkers with mercury analyses of umbilical cord tissue from 447 births. In particular, when expressed in relation to the dry weight of the tissue, the cord mercury concentration correlated very well with that in cord blood. Structural equation model analysis showed that these two biomarkers have average total imprecision of about 30%, which is much higher than the laboratory error. The imprecision of the dry-weight–based concentration was lower than that of the wet-weight–based parameter, and it was intermediate between those of the cord blood and the hair biomarkers. In agreement with this finding, regression analyses showed that the dry-weight cord mercury concentration was almost as good a predictor of methylmercury-associated neuropsychologic deficits at 7 years of age as was the cord-blood mercury concentration. Cord mercury analysis can therefore be used as a valid measure of prenatal methylmercury exposure, but appropriate adjustment for the imprecision should be considered
    corecore