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SUMMARY. Environmental risk assessment based on epidemiological data puts stringent de-

mands on the statistical procedures. First, convincing evidence has to be established that there is

at all a risk. In practice this endeavor requires prudent use of the observational epidemiological

information with delicate balancing between utilizing the information optimally but not over-

interpreting it. If a case for an environmental risk has been made, the second challenge is to

provide useful input that regulatory authorities can use to set standards. This paper surveys some

of these issues in the concrete case of neurobehavioral effects in Faroese children prenatally ex-

posed to methylmercury. A selection of modern, appropriate methods has been applied in the

analysis of this material that may be considered typical of environmental epidemiology today.

In particular we emphasize the potential of structural equation models for improving standard

multiple regression analysis of complex environmental epidemiology data.

KEY WORDS: Environmental epidemiology, Confounding, Measurement error, Multiple end-

points, Structural equation.

1 Introduction

Human health is affected by both inherited and environmental factors, and public-health experts

have been particularly eager to identify specific hazardous environments that could be targeted
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by preventative efforts. Statistical methods were not necessary when early observations sugges-

ted that cholera was caused by polluted drinking water, and many other early observations of

environmental risks were made without any detailed statistical insight. With chemical expos-

ures, early observations on poisoned victims likewise did not require sophisticated computations

to demonstrate associations. As perhaps best illustrated by the asbestos experience, modern

biostatistical methods subsequently allowed identification of delayed effects that had not been

apparent before. Because of the attention to environmental factors, it seems clear that all the

easy victories were already won long ago, with or without the help of biostatistics. Public health

research now faces the serious challenge of identifying specific risk factors that may result only

in non-specific, delayed effects where perhaps even individual predisposition plays a role. In

dealing with this challenge, public health research must use the most sensitive and accurate

methods to determine exposure levels, outcomes, and important confounders. Expanded bio-

statistics methodologies are needed to analyze the complicated interrelationships and to help

identify the hazardous environmental factors.

In this paper, we illustrate the current challenges using environmental exposure to methyl-

mercury as an example. Poisoning incidents have amply documented that this chemical accumu-

lates in fish and seafood, and that it can cause serious damage to the nervous system, especially

when extreme exposure occurs prenatally, i.e., due to the mother’s diet during pregnancy. Al-

though this hazard was therefore recognized, exposure limits were based on extrapolations from

human poisoning incidents or experimental animal studies (WHO, 1990). New data was collec-

ted on subjects who had been exposed to prevalent environmental levels of methylmercury, as

recently reviewed (NAS, 2000). The question therefore emerged how to extract the best possible

information from these results using modern biostatistical methods.

This paper focuses on statistical methods which are relevant for deciding whether or not the

exposure in question has an adverse effect. The further challenge concerning estimation of a

safe exposure level of a substance suspected to be toxic was considered in Budtz-Jørgensen et

al. (2001).

2 The Faroese Mercury Study

In the Faroe Islands, the population is exposed to increased levels methyl mercury mainly though

consumption of contaminated pilot whale meat. During 1986-1987 a birth cohort of 1022
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Faroese children was thefore established, and is being studied prospectively to examine pos-

sible adverse effects of prenatal exposure to methylmercury. The intrauterine methylmercury

exposure was determined by analysis of umbilical cord blood and maternal hair for mercury

(Grandjean et al., 1992). Furthermore, a midwife asked the mother concerning the course of the

pregnancy, nutritional habits (frequency of dinners with fish or pilot whale), and use of alco-

hol and tobacco during the pregnancy; the answers were entered in to a questionnaire that also

included information on the course of the parturition and data on the infant. Routine obstetric

parameters were obtained from the medical birth registry and from the patient charts.

At age 7 years, 917 (90%) of the cohort members participated in a thorough clinical examination

with focus on nervous system function (Grandjean et al., 1997). Neuropsychological tests were

chosen to include tasks that would be affected by the neuropathological abnormalities described

in congenital methylmercury poisoning and the functional deficits seen in children with early-life

exposure to other neurotoxicants. Paper-and-pencil tests were administered by a Faroese clinical

psychologist who had translated the tests into Faroese and verified their feasibility through pilot

testing of Faroese children. Three computer-assisted tests were given at a separate session using

the same computer.

3 Standard Analysis - confounder control

For ethical reasons randomized trials cannot be used when evaluating the (potential) adverse ef-

fects of environmental agents. Thus, in environmental epidemiology the resulting effect of the

exposure is often assessed from observational data. When analyzing such data the researcher

is always faced with the possibility that the exposure-response association may be confounded.

A confounder is defined as an extraneous determinant of the response which has imbalanced

distributions between the compared categories of the exposure (Miettinen, 1985). In many en-

vironmental studies, socioeconomic status is an important confounder. Subjects with a low so-

cioeconomic status tend to be more exposed to chemical agents than others. On the other hand

high socioeconomic status is typically associated with good health. Thus, if these associations

are ignored then the adverse health effects of the chemical are likely to be overrated.

Thus, to obtain a correct assessment of the health effects of a given environmental substance it

is important to take into account the effects of confounding variables. The first step in the con-

founder correction process is to identify all potential confounders. This identification should be
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based on all available biological knowledge about the mechanisms being studied. In the Faroese

study a set of 20 covariates including the child’s sex and age, maternal Raven score (a measure

of intelligence) and socioeconomic variables were identified on the basis of a priori knowledge

on potential influence on the outcome variables, as considered in the light of the epidemiological

setting in the Faroe Islands. Mercury exposure, which depends on local whale meat availability

and personal food preferences, more than, e.g., socioeconomic factors was thought to be weakly

related to most covariates. This was confirmed in multiple regression analysis showing that the

confounders could not explain more than 10% of the exposure variation. However, in bivariate

analysis 5 covariates were significantly (5% level) related to the exposure. Maternal intelligence

and education were negatively associated with mercury exposure. Furthermore, children with

a Danish mother, children in day care, and children with older siblings tended to have a lower

prenatal mercury exposure. Most of these associations are a result of low consumption of whale

meat in the capital of Tórshavn.

Having identified the potential confounders the aim of the preceding analysis is to estimate the

effect of a given exposure increase for fixed confounder values. This can be done by stratific-

ation or through some sort of regression analysis. However, as the a priori knowledge if often

limited the list of confounders may be long and the former approach is not feasible. Attention is

therefore restricted to the latter approach which has the advantage of yielding a stronger analysis

if the regression model is correct. In the Faroese study the full model including all potential

confounders contains more than 20 nuisance parameters in addition to the parameter of interest.

To gain power in the effect estimation, the standard statistical procedure prescribes identification

and removal of any unnecessary covariates (Kleinbaum, Kupper and Morgenstern, 1982). In

the original analysis of the Faroese data Grandjean et al. (1997) developed an ad hoc criterion

for confounder selection combining information across different outcome variables. According

to this method the child’s sex and age in addition to the maternal Raven score were considered

obligatory confounders for all outcome variables. For tasks performed on a computer a measure

of the child’s computer acquaintance was included in the set of obligatory confounders. Addi-

tional confounders were selected approximately as follows. For each neuropsychological test

important predictors were identified using backward elimination (adjusted for the obligatory co-

variates) with � =0.10. Predictors that were important for more than 3 outcomes (out of 17) were

then included in the final regression model for all outcomes.

For each of the neuropsychological outcomes Table 1 shows the estimated mercury effect using
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the mercury concentration in cord blood and in maternal hair, respectively, as the exposure in-

dicator. Exposure effects are corrected for the set of confounders identified by Grandjean et al.

(1997), after inclusion of a dichotomous covariate (Town7) indicating whether or not the child

was living in one of the three Faroese towns (Tórshavn, Klaksvik or Tvaeraa) at the time of

the examination. This covariate was not considered originally but has been added to the list of

confounders for control mainly because of concern that the rural children perform more poorly,

perhaps also because of fatigue caused by traveling to the hospital clinic. Furthermore, rural

children had a significantly (��������������� ) higher prenatal mercury exposure than urban children.

From Table 1 strong mercury effects are seen for the two Boston Naming Test (BNT) measures

and the reaction time test. Furthermore, it is seen that the cord blood concentration seem to be

a better predictor of childhood test performance than the concentration of mercury in maternal

hair. Compared to the results of Grandjean et al. (1997) inclusion of the 	�
����� covariate tended

to attenuate the mercury coefficients. In agreement with the a prior hypothesis urban children

performed better than rural children on most of the tests. Thus, these results indicate that 	�
������
is an important confounder of the relationship between prenatal mercury exposure and childhood

cognitive ability.

Table 1 here

4 Weaknesses of the standard analysis

In the previous section the Faroese data was analyzed using multiple regression methods. Al-

though this approach currently is the standard method it has some serious shortcomings when

applied to environmental epidemiology data.

4.1 Confounder selection uncertainty

As was the case for the Faroese study in observational epidemiology the confounders used for

control are often identified based on the data. Several confounder selection methods have been

suggested. Unfortunately, no standard procedure is really satisfactory. One approach (forward

selection/backward elimination) is based on stepwise testing of the effects of the potential con-

founders on the outcome while another (change-in-estimate) removes potential confounders as

long as the exposure effect does not change too much. Despite the frequent use the inferen-
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tial properties of these strategies are not yet well known, and so far it has not been possible to

identify an optimal procedure for confounder selection.

When the confounders have been selected the final analysis on the exposure effect is almost

always conducted as if the selected model were known a priori. Thus, the uncertainty associated

with the first part of the estimation process is erroneously ignored. This procedure may introduce

bias in the exposure effect estimate and precision estimates are likely to be overly optimistic

(Miller, 1990).

For the Faroese data Budtz-Jørgensen et al. (2002a) described how to adjust for data dependent

confounder identification. Because of the complex nature of the two-stage selection estimators

(first selection then estimation) no firm theory is currently available to perform such adjustments.

The bootstrap method (Efron and Tibshirani, 1993) therefore constitutes the obvious choice for

incorporation of model selection uncertainty in the final inference. This approach was applied

to the regression analysis of Section 3. In each bootstrap sample confounders were selected and

the exposure effect estimated. The statistical properties of the composite estimator were then

assessed from the empirical distributions of the exposure estimates. These analyses showed that

the selection method used did not underestimate the variability in the exposure coefficients by

an important amount. Furthermore, the difference between effect estimates obtained in the full

model and in the final model was small, indicating that the selection method is approximately

unbiased. Thus, the significant mercury effects of Table 1 cannot be explained as an artifact

caused by the data driven model selection process.

4.2 Exposure measurement error

The multiple regression analysis assumes that all independent variables are measured without er-

ror. This requirement is seldom satisfied for environmental exposure variables. The relevant dose

is often assumed to be some sort of a long term average load. Such exposure variables cannot

be measured without error. Typically, it is only feasible to measure the exposure at one or a few

specific points in time. Thus, in addition to ordinary laboratory error the exposure measurement

will also be subject to variations in time and biological differences between subjects.

Imprecision in the exposure variable can seriously affect the validity of the statistical analysis

of the exposure effect. Thus, instead of the true (causative) exposure variable � the investig-

ator is left with an error prone measure � . If � is naively substituted for � in the statistical

analysis, then the exposure effect estimate may yield a biased reflection of the causal effect of
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� . However, the statistical properties of the naive estimator depend on the model relating �
to the response � as well as the size and the nature of the measurement error (Carrol, Rup-

pert, Stefanski, 1995). Under the classic additive error model it is assumed that the exposure

measurement is given as a sum of the true exposure and a random error, i.e. � � ����� ,

where the measurement error � is independent of � . The measurement error is said to be

non-differential if � is independent of � given � and the condfounders (assumed error free).

In multiple regression analysis failure to adjust for non-differential measurement error will at-

tenuate the exposure effect. The higher the imprecision the stronger this attenuation becomes.

However, the attenuation also depends on the amount of confounding in the study and infer-

ence about confounder effects generally become invalid. This further complicates the task of

confounder selection (Budtz-Jørgensen et al., 2002b). Furthermore, exposure measurement er-

ror increases the residual variance in the exposure-response relation which means that power to

detect exposure effects is lost.

If more than one exposure indicator is available then it is possible to correct for the measure-

ment error under certain assumptions. Budtz-Jørgensen et al. (2002b) considered two correction

methods for the Faroese data. In one approach the measurement error variance of the cord blood

concentration was estimated using factor analysis. This approach assumes that except for meas-

urement error (log transformed) mercury concentrations in cord blood and maternal hair are

given as linear functions of the true unobserved exposure variable. In order to obtain an iden-

tified model a third exposure indicator, number of pilot whale dinners consumed by the mother

during pregnancy (log transformed), was included. Based on the estimated error variances con-

sistent estimators of the exposure effect can be obtained using the method of moments (Fuller,

1987). The cord blood regression coefficients were also corrected by viewing the maternal hair

concentration as a so-called instrumental variable (Fuller, 1987). These correction methods were

in good agreement both resulting in a 15% de-attenuation of the naive mercury coefficients.

4.3 Multiple endpoints

Prospective cohort studies often include a large number of disease endpoints. A priori informa-

tion about the adverse effect of the agents being studied is often weak, which makes it difficult

to rule out effects in advance. Inclusion of many outcome variables will reduce the risk of over-

looking important health effects. On the negative side, this will also increase the risk of chance

findings, especially if each endpoint is analyzed separately without any clear a priori hypothesis.
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In the Faroese study information was collected on 17 different neurobehavioural test variables.

Furthermore, the prenatal mercury exposure was measured in two ways: as the concentration

of mercury in maternal hair and as the mercury concentration in the cord blood. Thus, in the

standard analysis of these data the hypothesis of no mercury effect was tested 34 times (Table 1).

Although all associations appeared to be in the direction expected, it is not surprising that some

mercury effects were found to be statistically significant at the conventional level of 5%.

Figure 1 here

Thus, to obtain a correct assessment of the significance of the estimated exposure effects it is

often necessary to conduct some sort of correction for multiple testing. The Bonferroni method

is the standard technique for this purpose. However, with correlated outcomes this method is

known to be very conservative. This is a critical weakness when studying the relatively weak

effects of low level exposure to chemical substances. In addition, the outcome variables in

environmental epidemiology are often noisy which further reduces the power to detect exposure

effects. The neurobehavioural outcomes in the Faroese study illustrate this point nicely. Figure

1 shows a partial residual plot of the association between prenatal mercury exposure and the

scores on the cued Boston Naming Test. Even though this outcome has the strongest mercury

effect this effect is seen to be quite small compared to the large residual variation.

5 Structural Equation Modeling

This section gives a general presentation of a class of statistical models which are better equipped

than standard regression models to deal with the statistical challenges associated with analyzing

environmental epidemiological data.

Structural equation models constitute a very general and flexible class of statistical models in-

cluding ordinary regression models and factor analytic models (Bollen 1989; Arminger, Wit-

tenberg and Schepers, 1996). The aim is to model the conditional distribution of the observed

response variables ����� ������� � ��� � � � � �	� � 
	���� given the observed covariates ����� ������� � ��� � � � � ��� � ������� of

subject � , � � � � � � � � � . This is achieved by first attaching a continuous latent response variable

���� � � to each of the observed response variables. The relation between ��� � � and ���� � � depends on the

nature of the observed variable. For ��� � � continuous one simply lets ��� � � ������ � � , while a threshold

model is postulated if ��� � � is ordered categorical or censored.

A structural equation model typically consists of two parts: a measurement model and a struc-
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tural model. In the measurement model the response variable � � is related to the covariates and a

latent � -dimensional variable ���

� �� ��� �����	� �	� ��� �	
 � � (1)

where � is a vector of intercepts, � is a ��� � matrix of factor loadings and 
�� is a vector of

measurement errors, which follows a normal distribution with mean zero and covariance  . The

matrix � contains regression coefficients which describe direct effects of the covariates on the

(latent) response variables. Usually only a few of the rows of � are different from zero.

The structural part of the model describes the relation between the latent variables ( � � ) and the

covariates

��� ��� ������� ��� ��� ����� (2)

Here � is a vector of intercepts and � is an � � � matrix of regression coefficients describing

the relation between the latent variables. The diagonal elements of this matrix is zero and �����
is non-singular. Covariate effects are given by the � ��� matrix � . � � is an � -dimensional vector

of residuals, which is assumed to be independent of the measurement errors 
�� , while following

a normal distribution with mean zero and variance � .

The model can be extended by letting some parameters depend on a group variable. For example,

the parameters of the structural part of the model may depend on the gender of the subject.

5.1 Estimation

The parameters to be estimated are � =( � � � � � � � �  � � � � � � � � ) where � denotes the vector of

all unknown thresholds. The likelihood function is derived by noting that the conditional dis-

tribution of � �� given � � is � 
��! �"� � �$# �"� � ��� �&% �'� �&( , where  �"� � = � �$� �"�)�*� �,+ � � , # �'� � =

� �"����� � + � � �-� and % �"� � = � �"���.� � + � � �/���.� � + �'0 � � �1 . The model is naturally exten-

ded by letting  � # and % vary freely. The resulting model is known as the reduced form or the

unrestricted model and plays a central role in the estimation algorithm for � .
Assuming independence between subjects the likelihood function becomes 2 ��� � � � � � �4365�87 �9;:=<?> ��� ��A@  �"� � ��# �"� � ��� �&% �"� � �CB � �� , where

>
is the density of the normal distribution, and the � ’th

domain of integration ( D � ) is the set of � �� -values which are mapped onto the observed value of

the response ��� .
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In models where all response variables are continuous the likelihood function is a product of

conditional normal distribution densities, and parameters may be estimated using the maximum

likelihood (ML) method. When one or more of the response variables is ordinal or censored, the

likelihood function is an integral and ML estimation is currently not available in user-friendly

software. Instead a weighted least squares estimation method suggested by Muthén (1984) may

be used. This method consists of three steps

1. The reduced form parameters � �  � # and the diagonal elements of % are estimated in mar-

ginal analyses of each of the � response variables ��� � � � � � � � � � � � . Thus, for ��� � � continu-

ous the estimates are obtained from an ordinary linear regression model, while an ordinal

probit model is fitted if ��� � � is ordered categorical. For identification the residual variance

of categorical response variables is set to one.

2. The off diagonal elements of % are estimated in the bivariate distributions of all pairs

of response variables. The estimates maximize the likelihood of the model for only two

response variables ( ��� � � � ��� � � � � � � � � � � � ) given the covariates and the estimates obtained in

step 1.

3. Reduced form parameters are stacked in a vector � and the parameters of the structural

equation model � are estimated by minimizing a weighted least squares discrepancy func-

tion

� �'� � � ��� � ��� �'� �&( � � + � ��� � ��� �"� �,( (3)

where � � is the vector of estimates obtained in steps 1 and 2 and � is a weight matrix.

Different choices of weight matrix � are available in user friendly software. For the so-called

WLS (weighted least squares) estimator � � � , where � is a consistent estimator of the

asymptotic covariance matrix of � � (Muthén, 1984). The (asymptotic) covariance of this estimator

is estimated by evaluating

	
var � ���
��� � � � + � ��� � � + � � � + � (4)

at �������� , where � ����� �'� ��� � � .
The WLSMV (weighted least squares mean and variance adjusted) estimator uses a diagonal �
matrix with estimated variances of � � as elements (Muthén, Du Toit and Spisic, 1997). For this
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estimator the asymptotic covariance matrix is estimated by

	
var � ���
������� � � � + � � � � � + � � � + � � � � + � � � + � � ��� � � + � � � + � (5)

Asymptotically, this estimator (WLSMV) is not as efficient as the WLS estimator. However, in

simulation studies Muthén, Du Toit and Spisic (1997) found that the WLSMV estimator provides

a dramatically improved performance compared to the WLS estimator. Thus, when sample sizes

are moderate, inclusion of off diagonal elements in the weight matrix � seems to introduce noise

rather than improving efficiency. Because of this superior performance at moderate sample sizes

the WLSMV estimator is sometimes described as robust.

5.2 Test of model fit

The fit of models for normally distributed responses can be compared using ordinary likelihood

ratio testing. For models where at least one of the response variables is not continuous a large

sample �
�
-test of model fit (against the unrestricted model) may be obtained as ��� ��� � 
����� ���
��� � ,

where
� 
��� denotes the WLS discrepancy function (3). Accordingly, a large sample test com-

paring nested models may be obtained noting that the corresponding ��� ��� � 
����� ���
��� � -difference

asymptotically has a �
�
-distribution with degrees of freedom equal to the difference in dimen-

sions between the models.

Instead of the WLS-test, Muthén, Du Toit and Spisic (1997) recommended the so-called mean

and variance adjusted �
�
-test ( 	
��� ), due to better statistical performance when sample sizes are

moderate. This statistic is obtained as follows

	���� � �!B � ���� � � � �&( � ��� � 
������� � ���
������� ��� (6)

where � � � + � � � + � � � � � � + � � �,+ � � � � � + � , � is the weight matrix of the WLSMV es-

timator and B � is the integer closest to ����� � � � �&( � ����� � � � � � � ( . This variable is approximately

�
�
-distributed with B � degrees of freedom. Unfortunately, this statistic cannot be used for com-

parison of two nested structural equation models since 	���� -differences are not �
�
-distributed.

5.3 Software

The data of the Faroese mercury study were analyzed using the statistical software packages

M������� , version 1.01 (Muthén and Muthén, 1998) and MECOSA 3 (Arminger, Wittenberg and
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Schepers, 1996). M����� � was preferred for the final analysis because it provides robust inferen-

tial methods, missing data analysis, user-friendly programming and high computational speed.

However, this program does not allow modeling of censored response variables. The WLSMV

estimator was used and the variance of these estimates was estimated using the expression (5)

(default in M� � � � ). Furthermore, model fit was assessed using the 	���� -statistic (6) unless oth-

erwise is stated.

6 Structural equation modeling of the Faroese data

The effect of prenatal mercury exposure on childhood neuropsychological test performance is

estimated in structural equation models. This approach is most powerful when the outcomes can

be combined into a limited number of latent effect parameters. Therefore, the neuropsycholo-

gical response variables were sorted into major nervous system functions. Budtz-Jørgensen et al.

(2002c) performed a thorough analysis including most of the Faroese outcome variables. Here a

preliminary analysis is presented with attention restricted to verbal outcomes. These are

Wechsler Intelligence Scale for Children - Revised Digit Spans: Digit spans of increasing

length were presented until the child failed both trials in a series of the same length. The score

( D � ) is the total number of correct forward trials.

California Verbal Learning Test (children): A list of 12 words that can be clustered into

categories was given given over five learning trails, followed by a presentation of an interference

list. The child was twice requested to recall the initial list, first immediately after the presentation

of the interference list and again 20 minutes later after completing some other tests. Finally,

a recognition test was administered. Scores are the total number of correct responses on the

learning trials ( � ��2 	 � ), on immediate and delayed recall conditions ( � ��2 	 � � � � 2 	�� ) and

on recognition ( � ��2 	�� ).
Boston Naming Test: The child was presented with drawings of objects and asked to name

the object. If no correct response was produced in 20 seconds a semantic cue was provided

describing the type of object represented. If a correct response still was not given, a phonemic

cue consisting of the first two letters in the name of the object was presented. The scores are

total correct without cues ( ��� 	 � ) and total correct after cues ( ��� 	 � ).
The main assumption in the statistical analysis of the scores on these neuropsychological tests is

that they are reflections of a underlying verbal function ( � � ). Thus, each outcome is assumed to
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be given as a sum of a term depending linearly on � � and a random error (1). To define the scale

of the latent verbal function the factor loading of the response BNT2 is fixed at one. As a starting

point measurement errors of different outcomes are assumed independent. Furthermore, these

outcome variables are all modeled as continuous (conditionally) normally distributed variables

as was the case in Grandjean et al. (1997) and in the standard analysis of Section 3.

The verbal function is hypothesized to be affected by the true mercury exposure ( � � ). Two

biomarkers of a child’s prenatal mercury exposure are available: the mercury concentration in

the cord blood ( � - ��� ) and the maternal hair mercury concentration (H-Hg). After a logarithmic

transformation the relation between these variables is approximately linear. This leads to the

following model for the distribution of the exposure biomarkers

����� � B-Hg � � � B-Hg � � B-Hg
� � �;� � � 
 B-Hg

����� � H-Hg � � � H-Hg � � H-Hg
� � �;� � � 
 H-Hg

(7)

where the subject index � has been suppressed for simplicity in notation. The measurement errors


 B-Hg and 
 H-Hg are assumed to be normally distributed with means 0. Furthermore, the blood and

hair measurement errors are assumed independent. Methylmercury is thought to have a biolo-

gical half-life of 45 days or slightly more so the concentration present in the cord blood reflects

the exposure mainly during the last couple of months of gestation. If (for instance) the true

dose is some sort of a long-term average mercury concentration the assumption of independence

between measurement errors in cord blood and in maternal hair may be appropriate because di-

gested mercury is deposited in the hair with a lag time of up to 6 weeks until detectable beyond

the hair root. This lag-time may ensure that the two biomarkers are not affected by the same

random biological fluctuations on a temporal scale. In addition, concentrations of mercury in

hair and in cord blood were determined by two different laboratories (Grandjean et al., 1992).

For identifiability it is assumed that � B-Hg
� � � � , thus the true mercury exposure has the same

scale as the (log-transformed) cord blood concentration. However, even with this restriction the

exposure part of model is not identified. Additional information on the prenatal mercury expos-

ure is available from the questionnaire data on maternal nutritional habits during pregnancy. In

connection with each birth a midwife asked the mother about the number of pilot whale din-

ners per month ( �
	�� �� ) and the number of fish dinners per week (
� � ��	 ). The distribution

of the ordered categorical variables �
	�� �� (5 categories: 0,1,2,3, � 4) and
� � ��	 (6 categories:

0,1,2,3,4, � 5) is modeled introducing latent continuous variables ( �
	�� ���� and
� � ��	 � ) and as-

suming a threshold relation as described in section 5. In this example the continuous latent
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variables could represent the weight of ingested whale meat and fish, respectively.

Intake of fish and pilot whale meat differ fundamentally from the measurements of mercury con-

centrations in hair and blood. While the latter two are determined (with a certain measurement

error) by the true exposure ( � � ), it may seem more natural to consider intake of fish and pilot

whale meat as determinants of a true exposure: an increase in maternal whale meat intake will in-

crease the mercury exposure, not the other way around. Bollen (1989, chapter 3) describes such

response variables as cause indicators as opposed to the two biomarkers which enter the model

as effect indicators. From (2) it is seen that latent variables can only be affected by the covariates

and other latent variables. Thus, to incorporate �
	�� �� � and
� � ��	 � as cause indicators in the

current modeling framework formally it is necessary to introduce two additional latent variables

� � and � � . These latent variables are identical to �
	�� ���� and
� � ��	 � . Thus, the measurement

model for these variables is given by �
	�� �� � ��� � , � � ��	 � ��� � .
The structural part of the model is � ��� ����� �	� � �	� with

� �

������
�
� � � � � �
� � � � � � � �
� � � �
� � � �

�������
�

The parameter � � � yields the effect of true mercury exposure on child verbal function. Thus, in

this model the mercury effect is described using only one parameter as opposed to the ordinary

regression analysis where 14 mercury coefficients were required.

Intake of whale meat and fish are assumed to affect the child’s mercury exposure, but no direct

effects of �
	�� ���� or
� � ��	 � on the verbal function are present in the model ( � � � ��� � � � � ). In

other words true mercury exposure is considered an intermediate variable in the relation between

maternal seafood intake and child verbal ability.

Potential confounders of the relation between prenatal mercury exposure and childhood test

performance are included in the model as covariates. Thus, these variables are assumed to be

measured without error. The confounders are allowed to be correlated with the true exposure

and assumed to affect the verbal function of the child (for fixed mercury exposure).

The first component of the disturbance term � � �'� ��� � � � � � ����� models the conditional distribution

of the latent verbal function given the true mercury exposure and the covariates. The second

component models the distribution of the true mercury exposure given the covariates and intake
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of whale meat and fish. The third and fourth component describe the conditional distribution

of respectively � 	�� �� � and
� � ��	 � given the covariates. These two terms are allowed to be

correlated, because the covariates are not likely to explain the strong association between intake

of whale meat and fish. Figure 2 shows the socalled path diagram of the proposed structural

equation model.

Figure 2 here

6.1 Results

The estimated mercury effect on the verbal test performance is �� � � � � ������� (Table 2). Thus, it

is estimated, that the effect of a 10-fold increase in the (true) cord blood mercury concentration

corresponds to a loss of 1.6 points on the cued BNT-test. In a two-sided test this effect is highly

significant with a � -value of 0.002. The mercury effect parameter ( � � � ) is on the same scale

as the cord blood mercury regression coefficient of the cued BNT-test. In Section 3 this coef-

ficient was estimated to � ��� � � . Thus, the structural equation model yields approximately the

same effect as the standard analysis. However, as the effect estimate of the structural equation

model is corrected for measurement error it may seem a little surprising that it is a little smaller

(numerically) than the naive regression coefficient. On the other hand, in the regression analysis

the strongest exposure effect was seen for the cord blood variable on the cued BNT-test. It is

not surprising that inclusion of other indicators of exposure and outcome, all showing weaker

exposure effects, results in an overall effect which is weaker than the strongest individual effect.

Table 2 also shows estimated factor loadings ( � ) and measurement error variances ( �
�
) of the two

biomarkers of prenatal mercury exposure. The quality of an indicator is not determined directly

by the measurement error variances because these variances are on different scales when the

factor loadings are different. The indicator with the largest error variance might be the best

indicator if it also has the largest factor loading. The measurement error standard deviation of

the maternal hair concentration is converted to the scale of the cord blood concentration after

multiplication by the absolute value of the factor loading ratio ( � H-Hg � @ � B-Hg
� � H-Hg @ ). From

the converted error variances (Table 2) it is seen that the cord blood mercury gives the most

precise reflection of true exposure. This result is in agreement with the results of Grandjean et

al. (1997) and Section 3 showing that in multiple regressions the cord blood concentration was a

stronger predictor of childhood cognitive deficits than the maternal hair concentration. The error

variance of the cord blood indicator, corresponds to a coefficient of variation of 28%. This result
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is approximately four times the documented analytical imprecision (Grandjean et al., 1992).

The results of this analysis should however be interpreted with care because the proposed model

does not fit the data adequately ( �
�� � � � � �

, � � ��� � ����� ). Below, the model is extended by

relaxing the assumption of conditional independence between verbal indicators, and by allowing

the covariate effects to vary more freely.

Table 2 here

6.2 Model refinements

6.2.1 Correction for local dependence

Local dependence is present when indicators are correlated beyond what is explained by the

latent constructs. In the model proposed it is assumed that a child’s test scores are independent

given the latent verbal level. However, it seems likely that this requirement is violated for the

tests considered here. As indicated in the overview above, tests reflecting the same latent function

can be collected further into subgroups in which the tasks resemble each other more. As a

consequence of this additional resemblance extra correlation between related indicators is to be

expected. For instance, if a child accidentally misunderstands the purpose of one of the tests

then this misunderstanding is likely to be repeated when the child performs the other tests in the

same subgroup. Thus, a child with a good verbal function can have relatively weak scores on all

four CVLT-tests or on both the BNT-tests.

Local dependence is modeled introducing two new latent variables � �
and � � , which enter the

model as random effects. In addition to the latent verbal function, the BNT-tests are assumed

to depend linearly on � �
, which is normally distributed and independent of all other variables.

Similarly, the CVLT-tests are assumed to depend on � � . To be precise, the measurement model

for the verbal tests is now

��� 	 � � �������	� � �
�	���	���� �;� � � �
�	���	�� ���;� �
� 
������	�

��� 	 � � ��������� � �
�	��������� �;� � � �
�	������� ���;� �
� 
��������

� ��2 	 � � �	��� ����� � ��� � ���	���� �;� � � ��� � ���	�� � �;� � � 
���� ���	�

� ��2 	 � � �	��� ����� � ��� � ��������� �;� � � ��� � ������� � �;� � � 
���� �����

� ��2 	�� � �	��� ������� ��� � ��������� �;� � � ��� � ������� � �;� � � 
���� �����

� ��2 	�� � �	��� ������� ��� � ��������� �;� � � ��� � ������� � �;� � � 
���� �����

D � � ��� � � ��� ��� ���;� � � � 
�� �
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The factor loading ��������� ��� � is fixed at 1 for identification. For the two BNT-tests, only one

(additional) correlation parameter is identifiable. Here the factor loadings of both indicators on

the random effect ( � �
) are set to 1 while the variance of � �

is free. Thus, the possibility of a

negative correlation between the two test scores is disregarded. Local dependence could also

have been introduced by freeing off-diagonal elements in  ( � var ��� ��A@ ��� � ��� � ). In this way, a

negative correlation between the BNT-tests could have been allowed for.

6.2.2 Correction for item bias

Under the model assumptions made so far, children on the same level of the latent verbal function

are excepted of have equal test scores on each of the individual tests. If item bias (or differential

response function) is present this assumption is violated. A neuropsychological test is said to

be biased with respect to for instance sex, if boys tend to score consistently higher (or lower)

than girls with the same ability level. In this analysis, a consequence of the assumption of no

item bias is that the covariates are assumed to affect verbal indicators in the same way except

for scale differences. For example, the ratio between mercury corrected regression coefficients

of a given covariate on the first two CVLT-tests is equal to the ratio of the verbal function factor

loadings ( ����� ��� ��� � � ����� ��� ��� � ). Comparisons of regression coefficients obtained in naive mul-

tiple regressions for each indicator suggested that the assumption of no item bias is not satisfied

for the study outcomes.

Item bias is easily incorporated in the model by allowing non-zero parameters in the matrix �
(1). Of course, it is not possible to identify item bias with respect to the same covariate for

all indicators of a given latent variable. As a minimum one indicator has to be assumed to be

unbiased. Here item bias is identified successively for the covariates. For a given covariate item

bias parameters are included for all indicators expect � ��2 	 � , which is assumed to unbiased.

Parameters that are insignificant in successive � -tests (backward elimination) are removed from

the model and a new covariate is investigated, similarly. The covariates were analyzed one at

a time starting with those a priori thought to be most important (i.e. the child’s age and sex

and maternal intelligence). To avoid identification of spurious effects using this multiple testing

procedure only parameters with a numeric � -statistic above 2.5 were considered significant.
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6.3 Results of the extended model

The extended model incorporating local dependence and item bias gives a very good fit ( �
��
� �

� � � � , � � ��� ��� � � ). As expected none of the random effects accounting for local dependence can

be ignored: in (naive) � -tests random effect variances are highly significant with test values of

5.60 (BNT) and 5.19 (CVLT). Furthermore, all random effect factor loadings are highly signi-

ficant (data not shown). Inclusion of three item bias parameters improved the model fit further.

Two of these parameters corresponded to item-bias caused by the child’s sex.

Despite the strong improvement in model fit estimated values for the main parameters (Table

3) have changed only little as a result of incorporating local dependence and item bias. The

mercury effect on the verbal function is slightly weaker but still highly significant. The meas-

urement parameters of the mercury exposure indicators are seen to be identical to those of Table

2, indicating that these parameters are determined almost entirely by the exposure indicators and

are only weakly dependent on the indicators of the verbal function.

In addition to providing a simpler presentation of the main trends in the data, the structural

equation approach yielded a stronger analysis. An overall test of no exposure effects based on

the multiple regression analysis of Section 3 may be obtained by assuming that the residuals of

indicators are normally distributed with an unrestricted covariance matrix. The significance of

the mercury effect is then assessed by testing the hypothesis that the mercury coefficient is zero

for all indicators. For the cord blood indicator this test was significant with a � -value of 2.25%,

while the test yielded a � -value of 27.7% for the maternal hair indicator.

Table 3 here

7 Discussion

Structural equation models were shown to be useful for interpreting complex environmental

data. In this framework many of the problems commonly encountered when analyzing epidemi-

ological data can be handled in a more satisfactory way than with standard statistical tools. Most

importantly, exposure effects are easily corrected for measurement error in the exposure indic-

ator(s) or in the confounders. This can be done either by sensitivity analysis assuming a known

error size or by estimating the error variances if multiple indicators are available. By viewing the

outcomes as indicators of latent variables a more parsimonious representation of the exposure

effects can be obtained and power may be gained. Problems with intermediate variables, ceiling
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effects in outcome distributions and multiple comparisons can also be handled using structural

equation techniques. Furthermore, path diagrams appear useful to explain the main assump-

tions of the analysis. Thus, a carefully conducted structural equation analysis will be valuable

for identification of overall trends in the data and when discussing the robustness of standard

regression results to deviations from the assumptions on which they rest.

Application of the multivariate method described above may however introduce another prob-

lem. When many variables (exposures, confounders and responses) are analyzed simultaneously

the subset of observations with complete data may be heavily reduced. This will decrease power

but may also lead to inconsistent estimation if data are not missing completely at random. This

problem was addressed in further analyses of the Faroese data (Budtz-Jørgensen et al., 2002c).

Ordered categorical variables were transformed for linearity and a structural equation model con-

sisting solely of continuous response variables was developed. For such models M� � � � allows

ML estimation based on the likelihood function of all available data (complete and in-complete)

under the weaker assumption that data are missing at random (Little and Rubin, 1987). This

analysis yielded mercury effect estimates close to those of Table 3 (data not shown).
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Cord Blood Hg Maternal Hair Hg
Response � � � �
NES2 Finger tapping
Preferred hand � � � ��� 0.08 � ����� � 0.08
Non preferred hand ����� � � 0.31 ��� � ��� 0.11
Both hands � ��� ��� 0.10 � � � � � 0.02
NES2 Hand-Eye Coordination
Error score � 0.03 0.27 0.05 0.10
NES2 Continuous Performance Test
Ln total missed � 0.22 0.07 0.08 0.52
Reaction time � 34.57 0.002 16.24 0.13
Wechsler Intelligence Scale
Digit Spans ��� � � � 0.14 ����� �� 0.24
Similarities ��������� � 0.99 ����� � � 0.57
Sqrt. Block Designs ����� ��� 0.31 ����� � �

0.59
Bender Visual Gestalt Test
Errors on copying � 0.33 0.49 0.33 0.51
Reproduction ����� � � 0.54 ����� � 0.68
Boston Naming Test
No cues � ��� � � 0.002 � ��� � � 0.04
With cues � ��� � � 0.001 � ��� �� 0.03
California Verbal Learning Test
Learning � ������� 0.23 ����� � � 0.27
Short-term repro. ����� � �

0.06 ����� � � 0.11
Long-term repro. ����� � �

0.10 ����� � � 0.15
Recognition ����� � �

0.21 ����� � � 0.38

Table 1: Estimated effects of a 10 fold increase in mercury exposure using the cord blood mer-
cury concentration and the mercury concentration in maternal hair, respectively, as the exposure
indicator. These effects are corrected for 	 
��� � in addition to the confounders identified by
Grandjean et al. (1997). � Higher scores indicate an adverse effect.

Mercury Effect Parameter Measurement Parameters of Mercury Indicators
�� � � � �� � Indicator � �

�
�
� � � �

Verbal Function � ������� 0.52 0.002
�����

(B-Hg) 1 0.015 0.015� ���
(H-Hg) 0.80 0.039 0.061

Table 2: Estimates of main parameters of the structural equation model. The left hand side of the
table gives the estimated effect of a ten-fold increase in mercury exposure. The right hand part
shows estimated factor loadings ( � ), measurement error variances ( �

�
) and converted variances

( �
� � � � ) for measurements of mercury concentrations in cord blood and in maternal hair.
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Mercury Effect Parameter Measurement Parameters of Mercury Indicators
�� � � � �� � Indicator � �

�
�
� � � �

Verbal Function � ����� � 0.51 0.003
�����

(B-Hg) 1 0.015 0.015� ���
(H-Hg) 0.80 0.039 0.061

Table 3: Estimates of main parameters in the structural equation model incorporating local de-
pendence and item bias. The left hand side of the table gives the estimated effect of a ten-fold
increase in mercury exposure. To the right estimated factor loadings ( � ), measurement error
variances ( �

�
) and converted variances ( �

� � � � ) for measurements of mercury concentrations in
cord blood and in maternal hair are given.

Figure 1: Partial residual plot of the relation between prenatal mercury exposure and the scores
on the cued Boston Naming Test.
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Figure 2: Path diagram for the association between indicators of mercury exposure and childhood verbal function. Here the variables \& and\� are ignored since they have been introduced only for technical reasons. In a path diagram observed variables are enclosed in boxes, latent
variables are in ovals (or circles) with the exception of disturbance terms. A causal relation is represented by a single headed arrow from the
causal variable to the effect variable. If two variables are connected by a two-headed arrow, this indicates that the variables are correlated
but no assumptions about causation are made.


