34,853 research outputs found

    Probing Unquenching Effects in the Gluon Polarisation in Light Mesons

    Full text link
    We introduce an extension to the ladder truncated Bethe-Salpeter equation for mesons and the rainbow truncated quark Dyson-Schwinger equations which includes quark-loop corrections to the gluon propagator. This truncation scheme obeys the axialvector Ward-Takahashi identity relating the quark self-energy and the Bethe-Salpeter kernel. Two different approximations to the Yang-Mills sector are used as input: the first is a sophisticated truncation of the full Yang-Mills Dyson-Schwinger equations, the second is a phenomenologically motivated form. We find that the spectra and decay constants of pseudoscalar and vector mesons are overall described well for either approach. Meson mass results for charge eigenstate vector and pseudoscalar meson masses are compared to lattice data. The effects of unquenching the system are small but not negligible.Comment: 26 pages, 13 figure

    Human platelet activation by Escherichia coli: roles for FcγRIIA and integrin αIIbβ3

    Get PDF
    Gram-negative Escherichia coli cause diseases such as sepsis and hemolytic uremic syndrome in which thrombotic disorders can be found. Direct platelet–bacterium interactions might contribute to some of these conditions; however, mechanisms of human platelet activation by E. coli leading to thrombus formation are poorly understood. While the IgG receptor FcγRIIA has a key role in platelet response to various Gram-positive species, its role in activation to Gram-negative bacteria is poorly defined. This study aimed to investigate the molecular mechanisms of human platelet activation by E. coli, including the potential role of FcγRIIA. Using light-transmission aggregometry, measurements of ATP release and tyrosine-phosphorylation, we investigated the ability of two E. coli clinical isolates to activate platelets in plasma, in the presence or absence of specific receptors and signaling inhibitors. Aggregation assays with washed platelets supplemented with IgGs were performed to evaluate the requirement of this plasma component in activation. We found a critical role for the immune receptor FcγRIIA, αIIbβ3, and Src and Syk tyrosine kinases in platelet activation in response to E. coli. IgG and αIIbβ3 engagement was required for FcγRIIA activation. Moreover, feedback mediators adenosine 5’-diphosphate (ADP) and thromboxane A₂ (TxA₂) were essential for platelet aggregation. These findings suggest that human platelet responses to E. coli isolates are similar to those induced by Gram-positive organisms. Our observations support the existence of a central FcγRIIA-mediated pathway by which human platelets respond to both Gram-negative and Gram-positive bacteria

    An assessment of an F2 or N2O4 atmospheric injection from an aborted space shuttle mission

    Get PDF
    Assuming a linear relationship between the stratosphere loading of NOx and the magnitude of the ozone perturbation, the change in ozone expected to result from space shuttle ejection of N2O4 was calculated based on the ozone change that is predicted for the (much greater) NOx input that would accompany large-scale operations of SSTs. Stratospheric fluorine reactions were critically reviewed to evaluate the magnitude of fluorine induced ozone destruction relative to the reduction that would be caused by addition of an equal amount of chlorine. The predicted effect on stratospheric ozone is vanishingly small

    Quark-gluon vertex dressing and meson masses beyond ladder-rainbow truncation

    Get PDF
    We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light quark pseudoscalar and vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role of the explicitly non-Abelian three gluon coupling in a global manner through one parameter determined from recent lattice-QCD data for the vertex. With the more consistent vertex used here, the error in ladder-rainbow truncation for vector mesons is never more than 10% as the current quark mass is varied from the u/d region to the b region.Comment: 15 pages, 12 figure

    Solar wind sputtering effects in the Martian atmosphere

    Get PDF
    A Monte Carlo simulation of the sputtering of the upper atmosphere of Mars by the solar wind was performed. The calculated sputtering yields imply loss rates (molecules/cm square - sec escaping the planet) for carbon dioxide, carbon, and oxygen of R(CO2) = 2.6 X 1000000/cm square - sec, R(C) = 6.6 X 1000000/cm square - sec, and R(O) = 7.7 X 1000000/cm - sec. The total mass loss by sputtering is only about 10% of that due to chemical and photo-chemical processes, but sputtering provides a major exospheric sink for carbon. The erosion process described here preferentially removes the lighter components of the atmosphere. Calculations based on a Monte Carlo simulation suggest that for a model atmosphere, 97% of the N2 and 33% of the CO2 originally present may have been sputtered away over 4.5 X 10 to the 9th power y. In the same length of time the (15)N/(14)N isotopic ratio for the bulk atmosphere would have increased by a factor 1.7

    Full-analytic frequency-domain 1pN-accurate gravitational wave forms from eccentric compact binaries

    Full text link
    The article provides ready-to-use 1pN-accurate frequency-domain gravitational wave forms for eccentric nonspinning compact binaries of arbitrary mass ratio including the first post-Newtonian (1pN) point particle corrections to the far-zone gravitational wave amplitude, given in terms of tensor spherical harmonics. The averaged equations for the decay of the eccentricity and growth of radial frequency due to radiation reaction are used to provide stationary phase approximations to the frequency-domain wave forms.Comment: 28 pages, submitted to PR
    corecore