2,794 research outputs found

    A hidden dimension? Work ideology and psychological contracts.

    Get PDF
    This paper explores whether the concept of psychological contracts underpinned by relational/transactional exchanges provides an adequate description of knowledge workers’ contracts. Interviews were conducted with scientists from the CSIRO. The analysis identified content of the psychological contract for the knowledge worker best understood by reference to an ideological currency. It raises questions over the role of normative occupation-specific beliefs about work, and the sharing of common currency elements by individuals in the same organization within the same occupation. The analysis lends support to calls in the literature for a reconsideration of the transactional/relational interpretative framework that underpins the psychological contract

    The psychological contract of knowledge workers

    Get PDF
    Purpose: This paper explores whether the concept of psychological contracts underpinned by relational/transactional exchanges provides an adequate description of knowledge workers’ contracts. Methodology: The research approach uses interviews with 10 scientists from within a pre-eminent Australian scientific research and development organisation, the Commonwealth Scientific & Industrial Research Organisation (CSIRO). Findings: The research strong evidence of an ideological currency within the psychological contract for this set of knowledge workers. Implications: The research raises questions over the role of normative occupation-specific beliefs about work, and the sharing of common currency elements by individuals in the same organization within the same occupation. The analysis lends support to calls in the literature for a reconsideration of the transactional/relational interpretative framework that underpins the psychological contract

    Thermodynamics of quantum Brownian motion with internal degrees of freedom: the role of entanglement in the strong-coupling quantum regime

    Full text link
    We study the influence of entanglement on the relation between the statistical entropy of an open quantum system and the heat exchanged with a low temperature environment. A model of quantum Brownian motion of the Caldeira-Leggett type - for which a violation of the Clausius inequality has been stated by Th.M. Nieuwenhuizen and A.E. Allahverdyan [Phys. Rev. E 66, 036102 (2002)] - is reexamined and the results of the cited work are put into perspective. In order to address the problem from an information theoretical viewpoint a model of two coupled Brownian oscillators is formulated that can also be viewed as a continuum version of a two-qubit system. The influence of an additional internal coupling parameter on heat and entropy changes is described and the findings are compared to the case of a single Brownian particle.Comment: 10 pages, 11 figure

    J D Bernal: philosophy, politics and the science of science

    Get PDF
    This paper is an examination of the philosophical and political legacy of John Desmond Bernal. It addresses the evidence of an emerging consensus on Bernal based on the recent biography of Bernal by Andrew Brown and the reviews it has received. It takes issue with this view of Bernal, which tends to be admiring of his scientific contribution, bemused by his sexuality, condescending to his philosophy and hostile to his politics. This article is a critical defence of his philosophical and political position

    J D Bernal: philosophy, politics and the science of science

    Get PDF
    This paper is an examination of the philosophical and political legacy of John Desmond Bernal. It addresses the evidence of an emerging consensus on Bernal based on the recent biography of Bernal by Andrew Brown and the reviews it has received. It takes issue with this view of Bernal, which tends to be admiring of his scientific contribution, bemused by his sexuality, condescending to his philosophy and hostile to his politics. This article is a critical defence of his philosophical and political position

    Evolution of Mass Outflow in Protostars

    Full text link
    We have surveyed 84 Class 0, Class I, and flat-spectrum protostars in mid-infrared [Si II], [Fe II] and [S I] line emission, and 11 of these in far-infrared [O I] emission. We use the results to derive their mass outflow rates. Thereby we observe a strong correlation of mass outflow rates with bolometric luminosity, and with the inferred mass accretion rates of the central objects, which continues through the Class 0 range the trend observed in Class II young stellar objects. Along this trend from large to small mass-flow rates, the different classes of young stellar objects lie in the sequence Class 0 -- Class I/flat-spectrum -- Class II, indicating that the trend is an evolutionary sequence in which mass outflow and accretion rates decrease together with increasing age, while maintaining rough proportionality. The survey results include two which are key tests of magnetocentrifugal outflow-acceleration mechanisms: the distribution of the outflow/accretion branching ratio b, and limits on the distribution of outflow speeds. Neither rule out any of the three leading outflow-acceleration, angular-momentum-ejection mechanisms, but they provide some evidence that disk winds and accretion-powered stellar winds (APSWs) operate in many protostars. An upper edge observed in the branching-ratio distribution is consistent with the upper bound of b = 0.6 found in models of APSWs, and a large fraction (0.31) of the sample have branching ratio sufficiently small that only disk winds, launched on scales as large as several AU, have been demonstrated to account for them.Comment: Version submitted to ApJ: 36 pages, 3 tables, 8 figure

    Maximal work extraction from quantum systems

    Get PDF
    Thermodynamics teaches that if a system initially off-equilibrium is coupled to work sources, the maximum work that it may yield is governed by its energy and entropy. For finite systems this bound is usually not reachable. The maximum extractable work compatible with quantum mechanics (``ergotropy'') is derived and expressed in terms of the density matrix and the Hamiltonian. It is related to the property of majorization: more major states can provide more work. Scenarios of work extraction that contrast the thermodynamic intuition are discussed, e.g. a state with larger entropy than another may produce more work, while correlations may increase or reduce the ergotropy.Comment: 5 pages, 0 figures, revtex

    Computational Studies of Magnetic Nozzle Performance

    Get PDF
    An extensive literature review of magnetic nozzle research has been performed, examining previous work, as well as a review of fundamental principles. This has allow us to catalog all basic physical mechanisms which we believe underlie the thrust generation process. Energy conversion mechanisms include the approximate conservation of the magnetic moment adiabatic invariant, generalized hall and thermoelectric acceleration, swirl acceleration, thermal energy transformation into directed kinetic energy, and Joule heating. Momentum transfer results from the interaction of the applied magnetic field with currents induced in the plasma plume., while plasma detachment mechanisms include resistive diffusion, recombination and charge exchange collisions, magnetic reconnection, loss of adiabaticity, inertial forces, current closure, and self-field detachment. We have performed a preliminary study of Hall effects on magnetic nozzle jets with weak guiding magnetic fields and weak expansions (p(sub jet) approx. = P(sub background)). The conclusion from this study is that the Hall effect creates an azimuthal rotation of the plasma jet and, more generally, creates helical structures in the induced current, velocity field, and magnetic fields. We have studied plasma jet expansion to near vacuum without a guiding magnetic field, and are presently including a guiding magnetic field using a resistive MHD solver. This research is progressing toward the implementation of a full generalized Ohm's law solver. In our paper, we will summarize the basic principle, as well as the literature survey and briefly review our previous results. Our most recent results at the time of submittal will also be included. Efforts are currently underway to construct an experiment at the University of Michigan Plasmadynamics and Electric Propulsion Laboratory (PEPL) to study magnetic nozzle physics for a RF-thruster. Our computational study will work directly with this experiment to validate the numerical model, in order to study magnetic nozzle physics and optimize magnetic nozzle design. Preliminary results from the PEPL experiment will also be presented
    • 

    corecore