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Figure 1. Comparison of a De Laval and a 
                magnetic nozzle.
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II. Approach 
To study magnetic nozzle physics we employ a generalized Ohm’s law MHD solver.  A standard form of the 

generalized Ohm’s law is 
 

ࡱ ൌ	െࢁ ൈ ൅࡮
ଵ

௡೐௤
ࡶ ൈ ࡮ െ

ଵ

௡೐௤
ሺ݊௘݇׏ ௘ܶሻ ൅

ࡶ

ఙ
  .  (1) 

 
The terms on the right of Equation 1 are the convective, Hall, electron pressure, and resistive terms, respectively.  
Previous efforts in studying magnetic nozzle physics with MHD methods have focused on ideal and resistive MHD 
solvers that incorporate only the convective and resistive terms in Ohm’s law.  Inclusion of the Hall and electron 
pressure terms, in addition to the conventional resistive term, enables our advanced MHD model to capture the 
physics of ion demagnetization and thermoelectric effects respectively.  Use of the generalized Ohm’s law given 
above is essential to capture important physics of magnetic nozzle operation and fulfills a current gap in the study of 
magnetic nozzle physics.   

III. Current Progress and Future Work 
An extensive literature review of magnetic nozzle research has been performed, examining previous work, as 

well as a review of fundamental principles. This has allow us to catalog all basic physical mechanisms which we 
believe underlie the thrust generation process. Energy conversion mechanisms include the approximate conservation 
of the magnetic moment adiabatic invariant, generalized hall and thermoelectric acceleration, swirl acceleration, 
thermal energy transformation into directed kinetic energy, and Joule heating. Momentum transfer results from the 
interaction of the applied magnetic field with currents induced in the plasma plume., while plasma detachment 
mechanisms include resistive diffusion, recombination and charge exchange collisions, magnetic reconnection, loss 
of adiabaticity, inertial forces, current closure, and self-field detachment. 

We have performed a preliminary study of Hall effects on magnetic nozzle jets with weak guiding magnetic 
fields and weak expansions (݌௝௘௧ ൎ  ௕௔௖௞௚௥௢௨௡ௗ).  The conclusion from this study is that the Hall effect creates an݌
azimuthal rotation of the plasma jet and, more generally, creates helical structures in the induced current, velocity 
field, and magnetic fields. We have studied plasma jet expansion to near vacuum without a guiding magnetic field, 
and are presently including a guiding magnetic field using a resistive MHD solver.  This research is progressing 
toward the implementation of a full generalized Ohm’s law solver.   

In our paper, we will summarize the basic principle, as well as the literature survey and briefly review our 
previous results.  Our most recent results at the time of submittal will also be included.  Efforts are currently 
underway to construct an experiment at the University of Michigan Plasmadynamics and Electric Propulsion 
Laboratory (PEPL) to study magnetic nozzle physics for a RF-thruster.  Our computational study will work directly 
with this experiment to validate the numerical model, in order to study magnetic nozzle physics and optimize 
magnetic nozzle design.  Preliminary results from the PEPL experiment will also be presented. 
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