218 research outputs found

    The Density of CD10 Corresponds to Commitment and Progression in the Human B Lymphoid Lineage

    Get PDF
    Requirements for human B lymphopoiesis are still poorly understood, and that has hampered investigation of differentiation events. For example, there are few cell surface antigens that can be used as milestones of lineage progression. The CD10 ectoenzyme is one such marker and has been used to define CLP, but we found substantial tissue specific variations in CD10 levels, and there was no information about how that corresponded to differentiation options.The aim of the present study was to use recently developed culture methods to assess the nature and differentiation potential of progenitors sorted according to CD10 density from umbilical cord blood (CB), adult bone marrow (BM) or G-CSF mobilized peripheral blood (PB). Many CD34(+) cells in BM express high levels of CD10, while low or low/negative CD10 densities were found on CD34(+) cells in CB or G-CSF mobilized PB, respectively. The relative abundance of CD10(Lo) versus CD10(Hi) cells only accounts for some CB versus BM differences. Almost all of the CD34(+) CD10(Hi) cells expressed CD19 and lymphocyte transcription factors and corresponded to loss of myeloid potential. A high degree of immunoglobulin D(H)-J(H) gene rearrangements was characteristic only of the CD10(Hi) subset. In contrast, the CD34(+) CD10(Lo) progenitors efficiently produced plasmacytoid and conventional dendritic cells as well as myeloid cells. These findings suggest a positive correlation between CD10 density and degree of differentiation. Although freshly isolated CD34(+) CD10(Hi) cells were in cycle, those from CB or BM expanded poorly in culture, suggesting regulators of populations remain to be discovered.Steps in human B lymphopoiesis have not been sufficiently studied, and we now show that increased CD10 expression corresponds to differentiation potential and stage. CD34(+) CD10(Hi) progenitors are obviously in the B lineage but may have progressed beyond the point where they can be expanded in culture

    Bistable Percepts in the Brain: fMRI Contrasts Monocular Pattern Rivalry and Binocular Rivalry

    Get PDF
    The neural correlates of binocular rivalry have been actively debated in recent years, and are of considerable interest as they may shed light on mechanisms of conscious awareness. In a related phenomenon, monocular rivalry, a composite image is shown to both eyes. The subject experiences perceptual alternations in which the two stimulus components alternate in clarity or salience. The experience is similar to perceptual alternations in binocular rivalry, although the reduction in visibility of the suppressed component is greater for binocular rivalry, especially at higher stimulus contrasts. We used fMRI at 3T to image activity in visual cortex while subjects perceived either monocular or binocular rivalry, or a matched non-rivalrous control condition. The stimulus patterns were left/right oblique gratings with the luminance contrast set at 9%, 18% or 36%. Compared to a blank screen, both binocular and monocular rivalry showed a U-shaped function of activation as a function of stimulus contrast, i.e. higher activity for most areas at 9% and 36%. The sites of cortical activation for monocular rivalry included occipital pole (V1, V2, V3), ventral temporal, and superior parietal cortex. The additional areas for binocular rivalry included lateral occipital regions, as well as inferior parietal cortex close to the temporoparietal junction (TPJ). In particular, higher-tier areas MT+ and V3A were more active for binocular than monocular rivalry for all contrasts. In comparison, activation in V2 and V3 was reduced for binocular compared to monocular rivalry at the higher contrasts that evoked stronger binocular perceptual suppression, indicating that the effects of suppression are not limited to interocular suppression in V1

    Distribution of Attention Modulates Salience Signals in Early Visual Cortex

    Get PDF
    Previous research has shown that the extent to which people spread attention across the visual field plays a crucial role in visual selection and the occurrence of bottom-up driven attentional capture. Consistent with previous findings, we show that when attention was diffusely distributed across the visual field while searching for a shape singleton, an irrelevant salient color singleton captured attention. However, while using the very same displays and task, no capture was observed when observers initially focused their attention at the center of the display. Using event-related fMRI, we examined the modulation of retinotopic activity related to attentional capture in early visual areas. Because the sensory display characteristics were identical in both conditions, we were able to isolate the brain activity associated with exogenous attentional capture. The results show that spreading of attention leads to increased bottom-up exogenous capture and increased activity in visual area V3 but not in V2 and V1

    The neural substrate of positive bias in spontaneous emotional processing

    Get PDF
    Even in the presence of negative information, healthy human beings display an optimistic tendency when thinking of past success and future chances, giving a positive bias to everyday's cognition. The tendency to actively select positive thoughts suggests the existence of a mechanism to exclude negative content, raising the issue of its dependence on mechanisms like those of effortful control. Using perfusion imaging, we examined how brain activations differed according to whether participants were left to prefer positive thoughts spontaneously, or followed an explicit instruction to the same effect, finding a widespread dissociation of brain perfusion patterns. Under spontaneous processing of emotional material, recruitment of areas associated with effortful attention, such as the dorsolateral prefrontal cortex, was reduced relative to instructed avoidance of negative material (F(1,58) = 26.24, p = 0.047, corrected). Under spontaneous avoidance perfusion increments were observed in several areas that were deactivated by the task, including the perigenual medial prefrontal cortex. Furthermore, individual differences in executive capacity were not associated with positive bias. These findings suggest that spontaneous positive cognitive emotion regulation in health may result from processes that, while actively suppressing emotionally salient information, differ from those associated with effortful and directed control

    Dissociable Influences of Auditory Object vs. Spatial Attention on Visual System Oscillatory Activity

    Get PDF
    Given that both auditory and visual systems have anatomically separate object identification (“what”) and spatial (“where”) pathways, it is of interest whether attention-driven cross-sensory modulations occur separately within these feature domains. Here, we investigated how auditory “what” vs. “where” attention tasks modulate activity in visual pathways using cortically constrained source estimates of magnetoencephalograpic (MEG) oscillatory activity. In the absence of visual stimuli or tasks, subjects were presented with a sequence of auditory-stimulus pairs and instructed to selectively attend to phonetic (“what”) vs. spatial (“where”) aspects of these sounds, or to listen passively. To investigate sustained modulatory effects, oscillatory power was estimated from time periods between sound-pair presentations. In comparison to attention to sound locations, phonetic auditory attention was associated with stronger alpha (7–13 Hz) power in several visual areas (primary visual cortex; lingual, fusiform, and inferior temporal gyri, lateral occipital cortex), as well as in higher-order visual/multisensory areas including lateral/medial parietal and retrosplenial cortices. Region-of-interest (ROI) analyses of dynamic changes, from which the sustained effects had been removed, suggested further power increases during Attend Phoneme vs. Location centered at the alpha range 400–600 ms after the onset of second sound of each stimulus pair. These results suggest distinct modulations of visual system oscillatory activity during auditory attention to sound object identity (“what”) vs. sound location (“where”). The alpha modulations could be interpreted to reflect enhanced crossmodal inhibition of feature-specific visual pathways and adjacent audiovisual association areas during “what” vs. “where” auditory attention
    corecore