58 research outputs found

    Interacting electrons in a one-dimensional random array of scatterers - A Quantum Dynamics and Monte-Carlo study

    Full text link
    The quantum dynamics of an ensemble of interacting electrons in an array of random scatterers is treated using a new numerical approach for the calculation of average values of quantum operators and time correlation functions in the Wigner representation. The Fourier transform of the product of matrix elements of the dynamic propagators obeys an integral Wigner-Liouville-type equation. Initial conditions for this equation are given by the Fourier transform of the Wiener path integral representation of the matrix elements of the propagators at the chosen initial times. This approach combines both molecular dynamics and Monte Carlo methods and computes numerical traces and spectra of the relevant dynamical quantities such as momentum-momentum correlation functions and spatial dispersions. Considering as an application a system with fixed scatterers, the results clearly demonstrate that the many-particle interaction between the electrons leads to an enhancement of the conductivity and spatial dispersion compared to the noninteracting case.Comment: 10 pages and 8 figures, to appear in PRB April 1

    Coulomb gap in a model with finite charge transfer energy

    Full text link
    The Coulomb gap in a donor-acceptor model with finite charge transfer energy Δ\Delta describing the electronic system on the dielectric side of the metal-insulator transition is investigated by means of computer simulations on two- and three-dimensional finite samples with a random distribution of equal amounts of donor and acceptor sites. Rigorous relations reflecting the symmetry of the model presented with respect to the exchange of donors and acceptors are derived. In the immediate neighborhood of the Fermi energy μ\mu the the density of one-electron excitations g(ϵ)g(\epsilon) is determined solely by finite size effects and g(ϵ)g(\epsilon) further away from μ\mu is described by an asymmetric power law with a non-universal exponent, depending on the parameter Δ\Delta.Comment: 10 pages, 6 figures, submitted to Phys. Rev.

    Single-particle excitations under coexisting electron correlation and disorder: a numerical study of the Anderson-Hubbard model

    Full text link
    Interplay of electron correlation and randomness is studied by using the Anderson-Hubbard model within the Hartree-Fock approximation. Under the coexistence of short-range interaction and diagonal disorder, we obtain the ground-state phase diagram in three dimensions, which includes an antiferromagnetic insulator, an antiferromagnetic metal, a paramagnetic insulator (Anderson-localized insulator) and a paramagnetic metal. Although only the short-range interaction is present in this model, we find unconventional soft gaps in the insulating phases irrespective of electron filling, spatial dimensions and long-range order, where the single-particle density of states (DOS) vanishes with a power-law scaling in one dimension (1D) or even faster in two dimensions (2D) and three dimensions (3D) toward the Fermi energy. We call it soft Hubbard gap. Moreover, exact-diagonalization results in 1D support the formation of the soft Hubbard gap beyond the mean-field level. The formation of the soft Hubbard gap cannot be attributed to a conventional theory by Efros and Shklovskii (ES) owing the emergence of soft gaps to the long-range Coulomb interaction. Indeed, based on a picture of multivalley energy landscape, we propose a phenomenological scaling theory, which predicts a scaling of the DOS in perfect agreement with the numerical results. We further discuss a correction of the scaling of the DOS by the long-range part of the Coulomb interaction, which modifies the scaling of Efros and Shklovskii. Furthermore, explicit formulae for the temperature dependence of the DC resistivity via variable-range hopping under the influence of the soft gaps are derived. Finally, we compare the present theory with experimental results of SrRu_{1-x}Ti_xO_3.Comment: 22 pages, 19 figure

    Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    Get PDF
    The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2)O(2) production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3)(-): 8.5 ± 1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3-) recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2)O(2) accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2)O(2) accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity

    Zebrafish Endzone Regulates Neural Crest-Derived Chromatophore Differentiation and Morphology

    Get PDF
    The development of neural crest-derived pigment cells has been studied extensively as a model for cellular differentiation, disease and environmental adaptation. Neural crest-derived chromatophores in the zebrafish (Danio rerio) consist of three types: melanophores, xanthophores and iridiphores. We have identified the zebrafish mutant endzone (enz), that was isolated in a screen for mutants with neural crest development phenotypes, based on an abnormal melanophore pattern. We have found that although wild-type numbers of chromatophore precursors are generated in the first day of development and migrate normally in enz mutants, the numbers of all three chromatophore cell types that ultimately develop are reduced. Further, differentiated melanophores and xanthophores subsequently lose dendricity, and iridiphores are reduced in size. We demonstrate that enz function is required cell autonomously by melanophores and that the enz locus is located on chromosome 7. In addition, zebrafish enz appears to selectively regulate chromatophore development within the neural crest lineage since all other major derivatives develop normally. Our results suggest that enz is required relatively late in the development of all three embryonic chromatophore types and is normally necessary for terminal differentiation and the maintenance of cell size and morphology. Thus, although developmental regulation of different chromatophore sublineages in zebrafish is in part genetically distinct, enz provides an example of a common regulator of neural crest-derived chromatophore differentiation and morphology

    Influence of the topology on the dynamics of a complex network of HIV/AIDS epidemic models

    Get PDF
    In this paper, we propose an original complex network model for an epidemic problem in an heterogeneous geographical area. The complex network is constructed by coupling nonidentical instances of a HIV/AIDS epidemiological model for which a disease-free equilibrium and an endemic equilibrium can coexist. After proving the existence of a positively invariant region for the solutions of the complex network problem, we investigate the effect of the coupling on the dynamics of the network, and establish the existence of a unique disease-free equilibrium for the whole network, which is globally asymptotically stable. We prove the existence of an optimal topology that minimizes the level of infected individuals, and apply the theoretical results to the case of the Cape Verde archipelago.This research was partially supported by the Portuguese Foundation for Science and Technology (FCT) within projects UID/MAT/04106/2019 (CIDMA) and PTDC/EEI-AUT/2933/2014 (TOCCATTA), co-funded by FEDER funds through COMPETE2020 – Programa Operacional Competitividade e Internacionalizac¸ao (POCI) and by national funds (FCT). Silva is also supported by national funds (OE), through FCT, I.P., in the scope of the framework contract foreseen in the numbers 4, 5 and 6 of the article 23, of the Decree-Law 57/2016, of August 29, changed by Law 57/2017, of July 19.publishe

    Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants

    Full text link
    • …
    corecore