199 research outputs found
Measuring Distance between Systems under Bounded Power Excitation
This work suggests a way of measuring distance between two linear systems under a given bounded power excitation. The measure introduced can be used to bound from above and below the difference in closed-loop behavior of two plants with the same controller for a specified reference or disturbance spectrum. Given an unknown, single input real plant and its identified model, an upper bound on the distance between the plant and its model as expressed by this measure can be obtained from time domain data
Algorithms for worst case identification in H-infinity and the nu-gap metric
This paper considers two robustly convergent algorithms for the identification of a linear system from (possibly) noisy frequency response data. Both algorithms are based on the same principle; obtaining a good worst case fit to the data under a smoothness constraint on the obtained model. However they differ in their notions of distance and smoothness. The first algorithm yields an FIR model of a stable system and is optimal, in a certain sense for a finite model order. The second algorithm may be used for modelling unstable plants and yields a real rational approximation in the -gap. Given a model and a controller stabilising the true plant, a procedure for winding number correction is also suggested
Recommended from our members
Women on Boards: Progress following the 2012 Corporate Governance Code
This report monitors and recounts progress to date against the Financial Reporting Council's 2012 amendment to the Corporate Governance Code, considering inclusion of diversity reporting within annual reports. From this and from measuring the reality of the statistics on women in leadership and board positions across the top FTSE 350 companies, the report comments on the extent to which gender diversity is becoming an integral part of corporate strategy
Recommended from our members
The Female FTSE Board Report 2015
This year we have seen significant progress on FTSE 100 boards. All-male boards have totally disappeared with Glencore, the last, appointing a woman to its board. The percentage of women on FTSE 100 boards is 23.5%, almost exactly where we predicted in last year's report. This puts us on track to hit the 25% target by the end of 2015. The percentage of women in executive directorships on FTSE 100 boards is at an all time high of 8.6% with 24 women holding such roles
Fundamental performance similarities between individual pitch control strategies for wind turbines.
The use of blade individual pitch control (IPC) offers a means of reducing the harmful turbine structural loads that arise from the uneven and unsteady forcing from the oncoming wind. In recent years two different and competing IPC techniques have emerged that are characterised by the specific loads that they are primarily designed to attenuate. In the first instance, methodologies such as single-blade control and Clarke Transform-based control have been developed to reduce the unsteady loads on the rotating blades, whilst tilt-yaw control and its many variants instead target load reductions in the non rotating turbine structures, such as the tower and main bearing. Given the seeming disparities between these controllers, the aim of this paper is to show the fundamental performance similarities that exist between them and hence unify research in this area. Specifically, we show that single-blade controllers are equivalent to a particular class of tilt-yaw controller, which itself is equivalent to Clarke~Transform-based control. This means that three architecturally dissimilar IPC controllers exist that yield exactly the same performance in terms of load reductions on fixed and rotating turbine structures. We further demonstrate this outcome by presenting results obtained from high-fidelity closed-loop turbine simulations
Development of an automated detection algorithm for patient motion blur in digital mammograms
The purpose is to develop and validate an automated method for detecting image unsharpness caused by patient motion blur in digital mammograms. The goal is that such a tool would facilitate immediate re-taking of blurred images, which has the potential to reduce the number of recalled examinations, and to ensure that sharp, high-quality mammograms are presented for reading. To meet this goal, an automated method was developed based on interpretation of the normalized image Wiener Spectrum. A preliminary algorithm was developed using 25 cases acquired using a single vendor system, read by two expert readers identifying the presence of blur, location, and severity. A predictive blur severity score was established using multivariate modeling, which had an adjusted coefficient of determination, R2 =0.63±0.02, for linear regression against the average reader-scored blur severity. A heatmap of the relative blur magnitude showed good correspondence with reader sketches of blur location, with a Spearman rank correlation of 0.70 between the algorithmestimated area fraction with blur and the maximum of the blur area fraction categories of the two readers. Given these promising results, the algorithm-estimated blur severity score and heatmap are proposed to be used to aid observer interpretation. The use of this automated blur analysis approach, ideally with feedback during an exam, could lead to a reduction in repeat appointments for technical reasons, saving time, cost, potential anxiety, and improving image quality for accurate diagnosis.</p
Modelling for Robust Feedback Control of Fluid Flows
This paper addresses the problem of obtaining low-order models of fluid flows for the purpose of designing robust feedback controllers. This is challenging since whilst many flows are governed by a set of nonlinear, partial differential-algebraic equations (the Navier-Stokes equations), the majority of established control theory assumes models of much greater simplicity, in that they are firstly: linear, secondly: described by ordinary differential equations, and thirdly: finite-dimensional. Linearisation, where appropriate, overcomes the first disparity, but attempts to reconcile the remaining two have proved difficult. This paper addresses these two problems as follows. Firstly, a numerical approach is used to project the governing equations onto a divergence-free basis, thus converting a system of differential-algebraic equations into one of ordinary differential equations. This dispenses with the need for analytical velocity-vorticity transformations, and thus simplifies the modelling of boundary sensing and actuation. Secondly, this paper presents a novel and straightforward approach for obtaining suitable low-order models of fluid flows, from which robust feedback controllers can be synthesised that provide~\emph{a~priori} guarantees of robust performance when connected to the (infinite-dimensional) linearised flow system. This approach overcomes many of the problems inherent in approaches that rely upon model-reduction. To illustrate these methods, a perturbation shear stress controller is designed and applied to plane channel flow, assuming arrays of wall mounted shear-stress sensors and transpiration actuators. DNS results demonstrate robust attenuation of the perturbation shear-stresses across a wide range of Reynolds numbers with a single, linear controller
- …