308 research outputs found
A Drosophila melanogaster mitotype may have an adaptive meaning
Several different mitochondrial clades have been found in natural populations of Drosophila melanogaster. Most often, the difference is in single nucleotide substitutions, some of which are conservative. Some clades are rare, and others dominate. It has been reported that clade III dominates over clades V and VI in seven populations of D. melanogaster. We compared D. melanogaster strains with different mitotypes by locomotor activity (using TriKinetics Drosophila Activity Monitor), energy expenditure (by indirect calorimetry, based on measuring oxygen consumption) and life span (under extreme conditions at 29 °C). The nuclear genomes of these strains were aligned for several generations by backcrosses. According to our data, individuals with the mitotype from clade III had a higher level of locomotor activity and longer life span. In terms of energy expenditure, the strains studied did not differ. However, the same level of energy expenditure may be differently distributed between the state of activity and the state of rest or sleep. If the energy expenditure during the sleep in flies with different locomotor activity is the same, then an individual with the same overall energy expenditure can move a greater distance or be active longer. This can be interpreted as an advantage of the strain with the mitotype from clade III compared to the other two mitotypes studied. If individuals have different energy expenditure values at rest, the strains with lower energy expenditure at rest spend less energy during forced inactivity. In this case, the mitotype from clade III should also be advantageous. What nucleotide substitutions in the mitotype from clade III can provide an adaptive advantage is not clear yet. We assume that individuals with widespread clade М(III) may have adaptive advantages compared to other mitotypes due to their greater locomotor activity even with the same energy expenditure. Further studies are required, for mitotypes are polymorphic for single nucleotide polymorphism not only between but also within the clades
Bose-Einstein condensation in an optical lattice: A perturbation approach
We derive closed analytical expressions for the order parameter
and for the chemical potential of a Bose-Einstein Condensate loaded into
a harmonically confined, one dimensional optical lattice, for sufficiently
weak, repulsive or attractive interaction, and not too strong laser
intensities. Our results are compared with exact numerical calculations in
order to map out the range of validity of the perturbative analytical approach.
We identify parameter values where the optical lattice compensates the
interaction-induced nonlinearity, such that the condensate ground state
coincides with a simple, single particle harmonic oscillator wave function
The null energy condition and instability
We extend previous work showing that violation of the null energy condition
implies instability in a broad class of models, including gauge theories with
scalar and fermionic matter as well as any perfect fluid. Simple examples are
given to illustrate these results. The role of causality in our results is
discussed. Finally, we extend the fluid results to more general systems in
thermal equilibrium. When applied to the dark energy, our results imply that w
is unlikely to be less than -1.Comment: 11 pages, 5 figures, Revte
Olfactory transport efficiency of the manganese oxide nanoparticles (II) after their single or multiple intranasal administrations
In experiments with reusable inhalation of nano-sized metal oxide particles, it has been shown that there is no significant relationship between the number of presentations and the metal concentration in the olfactory bulb. This fact raises the question of a possible decrease in the efficiency of particulate capturing by the olfactory epithelium after their repeated application into the nasal cavity. In this study, we compared the effectiveness of nasal transport of paramagnetic nanoparticles after their single and multiple intranasal administration and evaluated their effects on the morphological and functional characteristics of the olfactory system. Based on the data, the accumulation of MnO-NPs in the olfactory bulb of mice was reduced after repeated intranasal application. In addition, the decrease in the efficiency of olfactory transport observed after repeated administration of MnO-NPs was partially restored by intranasal application of mucolytic (0.01 M N-acetyl-L-cysteine). In this case, the concentration of particles in the olfactory bulb was proportional to the volume of the structure, which in particular depends on the number of synaptic contacts between the mitral cell of the olfactory bulb (OB) and olfactory epithelium (OE). It should be noted that multiple intranasal injections of MnO-NPs reduce mouse OE thickness. Thus, repeated intranasal introduction of MnO-NPs reduces the efficiency of nanoparticle olfactory transport from the nasal cavity to the brain, which is combined with the increase in the viscosity of the mucosal layer and the reduction in the number of synaptic contacts between OB and OE. These results indicate the presence of the natural mechanisms of protection against the penetration of pathogens and xenobiotics into the olfactory epithelium; they also allow us to formulate practical recommendations on intranasal drugs delivery
Between-strain differences in hypothermic response in mice after intranasal administration of PtO nanoparticles
Air pollution by particulate matter (PM) has been associated with cardiopulmonary morbidity and mortality in many recent epidemiological studies. It has been shown that transition metal compounds, well- known toxic components of PM, are able to induce hypothermia following whole-body inhalation exposure. Low temperature appears to protect tissue against toxic effects of PM metal compounds in vivo and in vitro. To study the role of soluble and insoluble irritants in the induction of the hypothermic response, we analyzÂed the decrease in mouse body temperature (Δtbody) after intranasal administration of PtO nanoparticles or a K2[PtCl 4] solution. Between-strain differences in Δtbody after intranasal administration of the irritants were evaluated using 6 inbred (BALB/cJ, C57BL/6J, AKR/OlaHsd, DBA/2JRccHsd, C3H/HeNHsd, and SJL/J) and 2 outbred mouse strains (SCID and CD1). BALB/cJ and SCID mice showed the most pronounced effect of intranasal adminiÂstration of the xenobiotic on tbody. Thus, tbody was signiÂficantly lower after nasal administration the PtO nanoÂparticles than after administration of the K2[PtCl 4] solution. To study the mechanism of this decrease, we comparÂed the respective values for Δtbody following intraÂnasal, intravenous and peroral administration of PtO nanoparticles in Balb/c mice. Neither intravenous nor peroral administration had any effect on mouse body temperature. This fact together with data on the dynamics of the decrease in mouse body temperature following intranasal administration of PtO nanoparticles (max Δtbody ~ 80–100 min) allowed us to assume that this process is under nervous regulation. The correlation found between our data and some well-known phenotypic characteristics (phenome.jax.org) of the mouse strains used confirms this hypothesis
Metabolic and motor activity effects of microalgae (Chlorella vulgaris) in laboratory mice
In recent years, the microalgae (Chlorella vulgaris) have increasingly attracted great interest as a potential source of pharmacologically active compounds. Showing anticoagulation, antioxidant and antitumor activities of Chlorella revealed its hypotensive properties. The aim of this study was to evaluate the effects of Chlorella suspension on the weight of the animals, their moving activity, and erythropoiesis. The study was performed on males and females of ICR mice. The animals from the experimental group drank only the Chlorella suspension during 3 weeks and were given standard food. Control animals drank during this period only water and had the same food. The body weight of males in the control and the experimental group with Chlorella did not change, while females in the experimental group showed an increase of body weight in a week. A similar pattern was obtained for estimation of animal body weight changes relative to food consumption. The number of red blood cells in females and males from group with Chlorella increased only after 3 weeks after the start of the experiment. Hemoglobin also increased only after 3 weeks after the start of Chlorella consumption, but only for females. All groups of animals had the same motor activity during experiment. Blood sampling resulted in a reduction of activity in control males and females as well as in males with Chlorella. The motor activity of females with Chlorella after blood sampling did not change. So, consumption of the Chlorella suspension by females leads to more effective digestion and resulted in increased body weight, improved erythropoiesis resulted in increased red blood cells and hemoglobin and also increased their resistance to acute stress. The males in the same situation increased only the erythropoiesis
Constructing a Stochastic Model of Bumblebee Flights from Experimental Data
PMCID: PMC3592844This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
A link between phenotypic robustness and life expectancy in Drosophila melanogaster
Long-lived systems are expected to be stable, i. e. resistant to either external influences, or internal failures. Robustness of biological systems can be defined as a reciprocal value to their phenotypic plasticity expressed through a coefficient of variation (C.V.) for positively distributed phenotypic traits. Considering lifespan as phenotype, which integrates all functions of an organism, we showed that its phenotypic robustness correlates positively with life expectancy. We assessed lifespan parameters for a selection of inbred Drosophila melanogaster strains from Drosophila Genetic Reference Panel (DGRP) reared at 29 ºС. The robustness of lifespan phenotype (C.V.–1) correlated positively with estimated life expectancy for these strains. The same relation also holds for the lifespan of all DGRP strains reared at 25 ºС. Also, in agreement with previous observations, upon temperature change (decrease or increase) the survival curves scaled in time (stretched or shrunk respectively). In other words, the average lifespan decreased for flies reared at elevated temperature, but so did the standard deviation, and thus the coefficients of variation remained in the same range. From this we conclude that coefficients of variation correlate with life expectancies and account for the robustness of lifespan phenotype irrespective of accelerated aging caused by temperature
Olfactory transport efficiency of the amorphous and crystalline manganese oxide nanoparticles
The ability to deliver particulated xenobiotics and therapeutic drugs directly from the nasal cavity to the central nervous system, bypassing the hemato-encephalic barrier, determines a high importance of investigation of factors influencing this process. It was shown that the bioavailability of solid particles is influenced by their size and surface charge. At the same time, the impact of a crystal structure (crystalline/amorphous) has been poorly investigated. In this study, using sexually mature male C57BL/6J mice, we analyzed the efficiency of the nose-to-brain transport of crystalline and amorphous manganese oxide nanoparticles. T1-weighted magnetic resonance imaging (MRI) was used to evaluate the accumulation of manganese nanoparticles in olfactory bulb (OB) and olfactory epithelium (OE). So, it has been established that amorphous particles have higher accumulation rate in OE and OB in comparison with crystalline particles after their intranasal administration. The unequal ability of amorphous and crystalline particles to overcome the mucosal layer covering the OE may be one of the possible reasons for the different nose-to-brain transport efficiency of particulated matter. Indeed, the introduction of mucolytic (dithiothreitol) 20 minutes prior to intranasal particle application did not influence the accumulation of amorphous particles in OE and OB, but enhanced the efficiency of crystalline nanoparticle entry. Data on the different intake of amorphous and crystalline nanoparticles from the nasal cavity to the brain, as well as the evidence for the key role of the mucosal layer in differentiating the penetrating power of these particles will be useful in developing approaches to assessing air pollution and optimizing the methods of inhalation therapy
- …