3,410 research outputs found

    Chaos and Complexity of quantum motion

    Full text link
    The problem of characterizing complexity of quantum dynamics - in particular of locally interacting chains of quantum particles - will be reviewed and discussed from several different perspectives: (i) stability of motion against external perturbations and decoherence, (ii) efficiency of quantum simulation in terms of classical computation and entanglement production in operator spaces, (iii) quantum transport, relaxation to equilibrium and quantum mixing, and (iv) computation of quantum dynamical entropies. Discussions of all these criteria will be confronted with the established criteria of integrability or quantum chaos, and sometimes quite surprising conclusions are found. Some conjectures and interesting open problems in ergodic theory of the quantum many problem are suggested.Comment: 45 pages, 22 figures, final version, at press in J. Phys. A, special issue on Quantum Informatio

    Universal Long-time Behavior of Nuclear Spin Decays in a Solid

    Full text link
    Magnetic resonance studies of nuclear spins in solids are exceptionally well suited to probe the limits of statistical physics. We report experimental results indicating that isolated macroscopic systems of interacting nuclear spins possess the following fundamental property: spin decays that start from different initial configurations quickly evolve towards the same long-time behavior. This long-time behavior is characterized by the shortest ballistic microscopic timescale of the system and therefore falls outside of the validity range for conventional approximations of statistical physics. We find that the nuclear free induction decay and different solid echoes in hyperpolarized solid xenon all exhibit sinusoidally modulated exponential long-time behavior characterized by identical time constants. This universality was previously predicted on the basis of analogy with resonances in classical chaotic systems.Comment: 4 pages main paper + 3 pages supporting material, 3 figure

    Dust Streamers in the Virgo Galaxy M86 from Ram Pressure Stripping of its Companion VCC 882

    Get PDF
    The giant elliptical galaxy M86 in Virgo has a ~28 kpc long dust trail inside its optical halo that points toward the nucleated dwarf elliptical galaxy, VCC 882. The trail seems to be stripped material from the dwarf. Extinction measurements suggest that the ratio of the total gas mass in the trail to the blue luminosity of the dwarf is about unity, which is comparable to such ratios in dwarf irregular galaxies. The ram pressure experienced by the dwarf galaxy in the hot gaseous halo of M86 was comparable to the internal gravitational binding energy density of the presumed former gas disk in VCC 882. Published numerical models of this case are consistent with the overall trail-like morphology observed here. Three concentrations in the trail may be evidence for the predicted periodicity of the mass loss. The evaporation time of the trail is comparable to the trail age obtained from the relative speed of the galaxies and the trail length. Thus the trail could be continuously formed from stripped replenished gas if the VCC 882 orbit is bound. However, the high gas mass and the low expected replenishment rate suggest that this is only the first stripping event. Implications for the origin of nucleated dwarf ellipticals are briefly discussed.Comment: 22 pages, 7 figures, Astronomical Journal, August 2000, in pres

    Generalized probabilities taking values in non-Archimedean fields and topological groups

    Full text link
    We develop an analogue of probability theory for probabilities taking values in topological groups. We generalize Kolmogorov's method of axiomatization of probability theory: main distinguishing features of frequency probabilities are taken as axioms in the measure-theoretic approach. We also present a review of non-Kolmogorovian probabilistic models including models with negative, complex, and pp-adic valued probabilities. The latter model is discussed in details. The introduction of pp-adic (as well as more general non-Archimedean) probabilities is one of the main motivations for consideration of generalized probabilities taking values in topological groups which are distinct from the field of real numbers. We discuss applications of non-Kolmogorovian models in physics and cognitive sciences. An important part of this paper is devoted to statistical interpretation of probabilities taking values in topological groups (and in particular in non-Archimedean fields)

    Hyperentangled States

    Get PDF
    We investigate a new class of entangled states, which we call 'hyperentangled',that have EPR correlations identical to those in the vacuum state of a relativistic quantum field. We show that whenever hyperentangled states exist in any quantum theory, they are dense in its state space. We also give prescriptions for constructing hyperentangled states that involve an arbitrarily large collection of systems.Comment: 23 pages, LaTeX, Submitted to Physical Review

    Geophysical studies with laser-beam detectors of gravitational waves

    Full text link
    The existing high technology laser-beam detectors of gravitational waves may find very useful applications in an unexpected area - geophysics. To make possible the detection of weak gravitational waves in the region of high frequencies of astrophysical interest, ~ 30 - 10^3 Hz, control systems of laser interferometers must permanently monitor, record and compensate much larger external interventions that take place in the region of low frequencies of geophysical interest, ~ 10^{-5} - 3 X 10^{-3} Hz. Such phenomena as tidal perturbations of land and gravity, normal mode oscillations of Earth, oscillations of the inner core of Earth, etc. will inevitably affect the performance of the interferometers and, therefore, the information about them will be stored in the data of control systems. We specifically identify the low-frequency information contained in distances between the interferometer mirrors (deformation of Earth) and angles between the mirrors' suspensions (deviations of local gravity vectors and plumb lines). We show that the access to the angular information may require some modest amendments to the optical scheme of the interferometers, and we suggest the ways of doing that. The detailed evaluation of environmental and instrumental noises indicates that they will not prevent, even if only marginally, the detection of interesting geophysical phenomena. Gravitational-wave instruments seem to be capable of reaching, as a by-product of their continuous operation, very ambitious geophysical goals, such as observation of the Earth's inner core oscillations.Comment: 29 pages including 8 figures, modifications and clarifications in response to referees' comments, to be published in Class. Quant. Gra

    Spectral Shape of Relaxations in Silica Glass

    Full text link
    Precise low-frequency light scattering experiments on silica glass are presented, covering a broad temperature and frequency range (9 GHz < \nu < 2 THz). For the first time the spectral shape of relaxations is observed over more than one decade in frequency. The spectra show a power-law low-frequency wing of the relaxational part of the spectrum with an exponent α\alpha proportional to temperature in the range 30 K < T < 200 K. A comparison of our results with those from acoustic attenuation experiments performed at different frequencies shows that this power-law behaviour rather well describes relaxations in silica over 9 orders of magnitude in frequency. These findings can be explained by a model of thermally activated transitions in double well potentials.Comment: 4 pages, 3 figures, submitted to Phys. Rev. Let

    A monument to the player: Preserving a landscape of socio-cultural capital in the transitional MMORPG

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 Taylor & Francis LtdMassively multiplayer online role-playing games (MMORPGs) produce dynamic socio-ludic worlds that nurture both culture and gameplay to shape experiences. Despite the persistent nature of these games, however, the virtual spaces that anchor these worlds may not always be able to exist in perpetuity. Encouraging a community to migrate from one space to another is a challenge now facing some game developers. This paper examines the case of Guild Wars¼ and its “Hall of Monuments”, a feature that bridges the accomplishments of players from the current game to the forthcoming sequel. Two factor analyses describe the perspectives of 105 and 187 self-selected participants. The results reveal four factors affecting attitudes towards the feature, but they do not strongly correlate with existing motivational frameworks, and significant differences were found between different cultures within the game. This informs a discussion about the implications and facilitation of such transitions, investigating themes of capital, value perception and assumptive worlds. It is concluded that the way subcultures produce meaning needs to be considered when attempting to preserve the socio-cultural landscape

    Long-range potential fluctuations and 1/f noise in hydrogenated amorphous silicon

    Full text link
    We present a microscopic theory of the low-frequency voltage noise (known as "1/f" noise) in micrometer-thick films of hydrogenated amorphous silicon. This theory traces the noise back to the long-range fluctuations of the Coulomb potential produced by deep defects, thereby predicting the absolute noise intensity as a function of the distribution of defect activation energies. The predictions of this theory are in very good agreement with our own experiments in terms of both the absolute intensity and the temperature dependence of the noise spectra.Comment: 8 pages, 3 figures, several new parts and one new figure are added, but no conceptual revision
    • 

    corecore