159 research outputs found

    Novel measurement scheme for injection-locking experiments

    Get PDF
    A novel experimental setup for injection-locking experiments is presented. The single-mode-fiber-based configuration allows one to precisely control the power and the polarization state of the light injected from the master laser into the slave laser cavity. Different behaviors typical for injection locking with single-mode semiconductor lasers (e.g., stable injection locking, undamped relaxation oscillations, nearly degenerate four-wave mixing, period doubling, chaotic behavior) are experimentally observed and theoretically verified using a rate-equation-based model. Measurements and calculations are entirely linked analytically and thoroughly compared by means of the corresponding power spectra. The good quantitative agreement between measurements and model validates the model, the analytical approach, and the experimental setu

    2-laser injection-locking configuration for Brillouin fibre sensors

    Get PDF
    We propose in this paper a novel method for generating the pump and probe signals for a Brillouin fibre sensor. It is based on the injection locking of two distinct semiconductor lasers, that makes possible the generation of high purity beat signals in the microwave frequency range. Such a technique can be used either in the pulsed pump-probe technique or the new correlation-based technique. Furthermore novel devices, such as laser modules presenting integrated electro-absorption modulators, can be exploited for achieving efficient and cost effective injection locking scheme

    Generation of Arbitrary Frequency Chirps with a Fiber-Based Phase Modulator and Self-Injection-Locked Diode Laser

    Get PDF
    We present a novel technique for producing pulses of laser light whose frequency is arbitrarily chirped. The output from a diode laser is sent through a fiber-optical delay line containing a fiber-based electro-optical phase modulator. Upon emerging from the fiber, the phase-modulated pulse is used to injection-lock the laser and the process is repeated. Large phase modulations are realized by multiple passes through the loop while the high optical power is maintained by self-injection-locking after each pass. Arbitrary chirps are produced by driving the modulator with an arbitrary waveform generator

    High order amplitude equation for steps on creep curve

    Full text link
    We consider a model proposed by one of the authors for a type of plastic instability found in creep experiments which reproduces a number of experimentally observed features. The model consists of three coupled non-linear differential equations describing the evolution of three types of dislocations. The transition to the instability has been shown to be via Hopf bifurcation leading to limit cycle solutions with respect to physically relevant drive parameters. Here we use reductive perturbative method to extract an amplitude equation of up to seventh order to obtain an approximate analytic expression for the order parameter. The analysis also enables us to obtain the bifurcation (phase) diagram of the instability. We find that while supercritical bifurcation dominates the major part of the instability region, subcritical bifurcation gradually takes over at one end of the region. These results are compared with the known experimental results. Approximate analytic expressions for the limit cycles for different types of bifurcations are shown to agree with their corresponding numerical solutions of the equations describing the model. The analysis also shows that high order nonlinearities are important in the problem. This approach further allows us to map the theoretical parameters to the experimentally observed macroscopic quantities.Comment: LaTex file and eps figures; Communicated to Phys. Rev.

    One Step Nucleic Acid Amplification (OSNA) - a new method for lymph node staging in colorectal carcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate histopathological evaluation of resected lymph nodes (LN) is essential for the reliable staging of colorectal carcinomas (CRC). With conventional sectioning and staining techniques usually only parts of the LN are examined which might lead to incorrect tumor staging. A molecular method called OSNA (One Step Nucleic Acid Amplification) may be suitable to determine the metastatic status of the complete LN and therefore improve staging.</p> <p>Methods</p> <p>OSNA is based on a short homogenisation step and subsequent automated amplification of cytokeratin 19 (CK19) mRNA directly from the sample lysate, with result available in 30-40 minutes. In this study 184 frozen LN from 184 patients with CRC were investigated by both OSNA and histology (Haematoxylin & Eosin staining and CK19 immunohistochemistry), with half of the LN used for each method. Samples with discordant results were further analysed by RT-PCR for CK19 and carcinoembryonic antigen (CEA).</p> <p>Results</p> <p>The concordance rate between histology and OSNA was 95.7%. Three LN were histology+/OSNA- and 5 LN histology-/OSNA+. RT-PCR supported the OSNA result in 3 discordant cases, suggesting that metastases were exclusively located in either the tissue analysed by OSNA or the tissue used for histology. If these samples were excluded the concordance was 97.2%, the sensitivity 94.9%, and the specificity 97.9%. Three patients (3%) staged as UICC I or II by routine histopathology were upstaged as LN positive by OSNA. One of these patients developed distant metastases (DMS) during follow up.</p> <p>Conclusion</p> <p>OSNA is a new and reliable method for molecular staging of lymphatic metastases in CRC and enables the examination of whole LN. It can be applied as a rapid diagnostic tool to estimate tumour involvement in LN during the staging of CRC.</p
    • …
    corecore