295 research outputs found

    Sox10 contributes to the balance of fate choice in dorsal root ganglion progenitors

    Get PDF
    The development of functional peripheral ganglia requires a balance of specification of both neuronal and glial components. In the developing dorsal root ganglia (DRGs), these compo- nents form from partially-restricted bipotent neuroglial precursors derived from the neural crest. Work in mouse and chick has identified several factors, including Delta/Notch signal- ing, required for specification of a balance of these components. We have previously shown in zebrafish that the Sry-related HMG domain transcription factor, Sox10, plays an unex- pected, but crucial, role in sensory neuron fate specification in vivo. In the same study we described a novel Sox10 mutant allele, sox10baz1, in which sensory neuron numbers are elevated above those of wild-types. Here we investigate the origin of this neurogenic pheno- type. We demonstrate that the supernumerary neurons are sensory neurons, and that enteric and sympathetic neurons are almost absent just as in classical sox10 null alleles; peripheral glial development is also severely abrogated in a manner similar to other sox10 mutant alleles. Examination of proliferation and apoptosis in the developing DRG reveals very low levels of both processes in wild-type and sox10baz1, excluding changes in the bal- ance of these as an explanation for the overproduction of sensory neurons. Using chemical inhibition of Delta-Notch-Notch signaling we demonstrate that in embryonic zebrafish, as in mouse and chick, lateral inhibition during the phase of trunk DRG development is required to achieve a balance between glial and neuronal numbers. Importantly, however, we show that this mechanism is insufficient to explain quantitative aspects of the baz1 phenotype. The Sox10(baz1) protein shows a single amino acid substitution in the DNA binding HMG domain; structural analysis indicates that this change is likely to result in reduced flexibility in the HMG domain, consistent with sequence-specific modification of Sox10 binding to DNA. Unlike other Sox10 mutant proteins, Sox10(baz1) retains an ability to drive neurogenin1 transcription. We show that overexpression of neurogenin1 is sufficient to produce supernu- merary DRG sensory neurons in a wild-type background, and can rescue the sensory neu- ron phenotype of sox10 morphants in a manner closely resembling the baz1 phenotype. We conclude that an imbalance of neuronal and glial fate specification results from the Sox10 (baz1) protein\u2019s unique ability to drive sensory neuron specification whilst failing to drive glial development. The sox10baz1 phenotype reveals for the first time that a Notch-dependent lat- eral inhibition mechanism is not sufficient to fully explain the balance of neurons and glia in the developing DRGs, and that a second Sox10-dependent mechanism is necessary. Sox10 is thus a key transcription factor in achieving the balance of sensory neuronal and glial fates

    Concurrent design and flight mission optimization of morphing airborne wind energy wings

    Get PDF
    Morphing wings are expected to have transformative impact on future transportation and energy systems. To enable analysis and optimization of morphing wings, efficient numerical models are critically important. In this work, we present an accurate and tractable reduced-order model embedded in a genetic-algorithm-based optimization framework. The modeling and optimization framework allows concurrent aerostructural design and flight trajectory optimization of morphing wings considering complete flight missions. The approach is demonstrated on a camber-morphing wing airborne wind energy (AWE) system. The system’s power production capability is improved by enabling wing shape changes, and thus adaptation of the aerodynamic properties through morphing at different flight conditions and operating modes. The results of this study highlight the potential of the proposed modeling and optimization approach: 1) the power production capability of the investigated AWE system is improved by 46.0% compared to a sequentially optimized wing design; and 2) by exploiting camber morphing to adapt the aerodynamic properties of the wing at different flight conditions, the power production is further increased by 7.8%

    Comparison between control-based continuation and phase-locked loop methods for the identification of backbone curves and nonlinear frequency responses

    Get PDF
    Control-based continuation (CBC) and phase-locked loops (PLL) are two experimental testing methods that have demonstrated great potential for the non-parametric identification of key nonlinear dynamic features such as nonlinear frequency responses and backbone curves. Both CBC and PLL exploit stabilizing feedback control to steer the dynamics of the tested system towards the responses of interest and overcome important difficulties experienced when applying conventional testing methods such as sine sweeps to nonlinear systems. For instance, if properly designed, the feedback controller can prevent the system from exhibiting untimely transitions between coexisting responses or even losing stability due to bifurcations. This contribution aims to highlight the similarities that exist between CBC and PLL and present the first thorough comparison of their capabilities. Comparisons are supported by numerical simulations as well as experimental data collected on a conceptually simple nonlinear structure primarily composed of a thin curved beam. The beam is doubly clamped and exhibits nonlinear geometric effects for moderate excitation amplitudes

    Comparison between control-based continuation and phase-locked loop methods for the identification of backbone curves and nonlinear frequency responses

    Get PDF
    Control-based continuation (CBC) and phase-locked loops (PLL) are two experimental testing methods that have demonstrated great potential for the non-parametric identification of key nonlinear dynamic features such as nonlinear frequency responses and backbone curves. Both CBC and PLL exploit stabilizing feedback control to steer the dynamics of the tested system towards the responses of interest and overcome important difficulties experienced when applying conventional testing methods such as sine sweeps to nonlinear systems. For instance, if properly designed, the feedback controller can prevent the system from exhibiting untimely transitions between coexisting responses or even losing stability due to bifurcations. This contribution aims to highlight the similarities that exist between CBC and PLL and present the first thorough comparison of their capabilities. Comparisons are supported by numerical simulations as well as experimental data collected on a conceptually simple nonlinear structure primarily composed of a thin curved beam. The beam is doubly clamped and exhibits nonlinear geometric effects for moderate excitation amplitudes

    Fast whole-brain imaging of seizures in zebrafish larvae by two-photon light-sheet microscopy

    Get PDF
    Light-sheet fluorescence microscopy (LSFM) enables real-time whole-brain functional imaging in zebrafish larvae. Conventional one-photon LSFM can however induce undesirable visual stimulation due to the use of visible excitation light. The use of two-photon (2P) excitation, employing near-infrared invisible light, provides unbiased investigation of neuronal circuit dynamics. However, due to the low efficiency of the 2P absorption process, the imaging speed of this technique is typically limited by the signal-to-noise-ratio. Here, we describe a 2P LSFM setup designed for non-invasive imaging that enables quintuplicating state-of-the-art volumetric acquisition rate of the larval zebrafish brain (5 Hz) while keeping low the laser intensity on the specimen. We applied our system to the study of pharmacologically-induced acute seizures, characterizing the spatial-temporal dynamics of pathological activity and describing for the first time the appearance of caudo-rostral ictal waves (CRIWs)

    Treatment with COLchicine in hospitalized patients affected by COVID-19: The COLVID-19 trial

    Get PDF
    Objective: To evaluate whether the addition of colchicine to standard of care (SOC) results in better outcomes in hospitalized patients with COVID-19. Design: This interventional, multicenter, randomized, phase 2 study, evaluated colchicine 1.5 mg/day added to SOC in hospitalized COVID-19 patients (COLVID-19 trial) and 227 patients were recruited. The primary outcome was the rate of critical disease in 30 days defined as need of mechanical ventilation, intensive care unit (ICU), or death. Results: 152 non-anti-SARS-CoV-2-vaccinated patients (colchicine vs controls: 77vs75, mean age 69.1±13.1 vs 67.9±15 years, 39% vs 33.3% females, respectively) were analyzed. There was no difference in co-primary end-points between patients treated with colchicine compared to controls (mechanical ventilation 5.2% vs 4%, ICU 1.3% vs 5.3%, death 9.1% vs 6.7%, overall 11 (14.3%) vs 10 (13.3%) patients, P=ns, respectively). Mean time to discharge was similar (colchicine vs controls 14.1±10.4 vs 14.7±8.1 days). Older age (>60 years, P=0.025), P/F<275 mmHg (P=0.005), AST>40 U/L (P<0.001), pre-existent heart (P=0.02), lung (P=0.003), upper-gastrointestinal (P=0.014), lower-gastrointestinal diseases (P=0.009) and cancer (P=0.008) were predictive of achieving the primary outcome. Diarrhoea (9.1% vs 0%, p=0.0031) and increased levels of AST at 6 days (76.9±91.8 vs 33.5±20.7 U/l, P=0.016) were more frequent in the colchicine group. Conclusion: Colchicine did not reduce the rate and the time to the critical stage. Colchicine was relatively safe although adverse hepatic effects require caution. We confirm that older (>60 years) patients with comorbidities are characterized by worse outcome

    Missense mutations in Desmocollin-2 N-terminus, associated with arrhythmogenic right ventricular cardiomyopathy, affect intracellular localization of desmocollin-2 in vitro

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutations in genes encoding desmosomal proteins have been reported to cause arrhythmogenic right ventricular cardiomyopathy (ARVC), an autosomal dominant disease characterised by progressive myocardial atrophy with fibro-fatty replacement.</p> <p>We screened 54 ARVC probands for mutations in desmocollin-2 (<it>DSC2</it>), the only desmocollin isoform expressed in cardiac tissue.</p> <p>Methods</p> <p>Mutation screening was performed by denaturing high-performance liquid chromatography and direct sequencing.</p> <p>To evaluate the pathogenic potentials of the <it>DSC2 </it>mutations detected in patients affected with ARVC, full-length wild-type and mutated cDNAs were cloned in eukaryotic expression vectors to obtain a fusion protein with green fluorescence protein (GFP); constructs were transfected in neonatal rat cardiomyocytes and in HL-1 cells.</p> <p>Results</p> <p>We identified two heterozygous mutations (c.304G>A (p.E102K) and c.1034T>C (p.I345T)) in two probands and in four family members. The two mutations p.E102K and p.I345T map to the N-terminal region, relevant to adhesive interactions.</p> <p>In vitro functional studies demonstrated that, unlike wild-type DSC2, the two N-terminal mutants are predominantly localised in the cytoplasm.</p> <p>Conclusion</p> <p>The two missense mutations in the N-terminal domain affect the normal localisation of DSC2, thus suggesting the potential pathogenic effect of the reported mutations. Identification of additional DSC2 mutations associated with ARVC may result in increased diagnostic accuracy with implications for genetic counseling.</p
    • …
    corecore