4,815 research outputs found

    Electron-scale reduced fluid models with gyroviscous effects

    Full text link
    Reduced fluid models for collisionless plasmas including electron inertia and finite Larmor radius corrections are derived for scales ranging from the ion to the electron gyroradii. Based either on pressure balance or on the incompressibility of the electron fluid, they respectively capture kinetic Alfv\'en waves (KAWs) or whistler waves (WWs), and can provide suitable tools for reconnection and turbulence studies. Both isothermal regimes and Landau fluid closures permitting anisotropic pressure fluctuations are considered. For small values of the electron beta parameter βe\beta_e, a perturbative computation of the gyroviscous force valid at scales comparable to the electron inertial length is performed at order O(βe)O(\beta_e), which requires second-order contributions in a scale expansion. Comparisons with kinetic theory are performed in the linear regime. The spectrum of transverse magnetic fluctuations for strong and weak turbulence energy cascades is also phenomenologically predicted for both types of waves. In the case of moderate ion to electron temperature ratio, a new regime of KAW turbulence at scales smaller than the electron inertial length is obtained, where the magnetic energy spectrum decays like k13/3k_\perp^{-13/3}, thus faster than the k11/3k_\perp^{-11/3} spectrum of WW turbulence.Comment: 29 pages, 4 figure

    A City-Scale ITS-G5 Network for Next-Generation Intelligent Transportation Systems: Design Insights and Challenges

    Get PDF
    As we move towards autonomous vehicles, a reliable Vehicle-to-Everything (V2X) communication framework becomes of paramount importance. In this paper we present the development and the performance evaluation of a real-world vehicular networking testbed. Our testbed, deployed in the heart of the City of Bristol, UK, is able to exchange sensor data in a V2X manner. We will describe the testbed architecture and its operational modes. Then, we will provide some insight pertaining the firmware operating on the network devices. The system performance has been evaluated under a series of large-scale field trials, which have proven how our solution represents a low-cost high-quality framework for V2X communications. Our system managed to achieve high packet delivery ratios under different scenarios (urban, rural, highway) and for different locations around the city. We have also identified the instability of the packet transmission rate while using single-core devices, and we present some future directions that will address that.Comment: Accepted for publication to AdHoc-Now 201

    Hamiltonian closures for fluid models with four moments by dimensional analysis

    Full text link
    Fluid reductions of the Vlasov-Amp{\`e}re equations that preserve the Hamiltonian structure of the parent kinetic model are investigated. Hamiltonian closures using the first four moments of the Vlasov distribution are obtained, and all closures provided by a dimensional analysis procedure for satisfying the Jacobi identity are identified. Two Hamiltonian models emerge, for which the explicit closures are given, along with their Poisson brackets and Casimir invariants

    Mode signature and stability for a Hamiltonian model of electron temperature gradient turbulence

    Full text link
    Stability properties and mode signature for equilibria of a model of electron temperature gradient (ETG) driven turbulence are investigated by Hamiltonian techniques. After deriving the infinite families of Casimir invariants, associated with the noncanonical Poisson bracket of the model, a sufficient condition for stability is obtained by means of the Energy-Casimir method. Mode signature is then investigated for linear motions about homogeneous equilibria. Depending on the sign of the equilibrium "translated" pressure gradient, stable equilibria can either be energy stable, i.e.\ possess definite linearized perturbation energy (Hamiltonian), or spectrally stable with the existence of negative energy modes (NEMs). The ETG instability is then shown to arise through a Kre\u{\i}n-type bifurcation, due to the merging of a positive and a negative energy mode, corresponding to two modified drift waves admitted by the system. The Hamiltonian of the linearized system is then explicitly transformed into normal form, which unambiguously defines mode signature. In particular, the fast mode turns out to always be a positive energy mode (PEM), whereas the energy of the slow mode can have either positive or negative sign

    Derivation of reduced two-dimensional fluid models via Dirac's theory of constrained Hamiltonian systems

    Full text link
    We present a Hamiltonian derivation of a class of reduced plasma two-dimensional fluid models, an example being the Charney-Hasegawa-Mima equation. These models are obtained from the same parent Hamiltonian model, which consists of the ion momentum equation coupled to the continuity equation, by imposing dynamical constraints. It is shown that the Poisson bracket associated with these reduced models is the Dirac bracket obtained from the Poisson bracket of the parent model

    On the rate of convergence of the Hamiltonian particle-mesh method

    Get PDF
    The Hamiltonian Particle-Mesh (HPM) method is a particle-in-cell method for compressible fluid flow with Hamiltonian structure. We present a numer- ical short-time study of the rate of convergence of HPM in terms of its three main governing parameters. We find that the rate of convergence is much better than the best available theoretical estimates. Our results indicate that HPM performs best when the number of particles is on the order of the number of grid cells, the HPM global smoothing kernel has fast decay in Fourier space, and the HPM local interpolation kernel is a cubic spline

    A quasiconformal Hopf soap bubble theorem

    Get PDF
    We show that any compact surface of genus zero in Euclidean 3-space that satisfies a quasiconformal inequality between its principal curvatures is a round sphere. This solves an old open problem by H. Hopf, and gives a spherical version of Simon's quasiconformal Bernstein theorem. The result generalizes, among others, Hopf's theorem for constant mean curvature spheres, the classification of round spheres as the only compact elliptic Weingarten surfaces of genus zero, and the uniqueness theorem for ovaloids by Han, Nadirashvili and Yuan. The proof relies on the Bers-Nirenberg representation of solutions to linear elliptic equations with discontinuous coefficients.Comment: 19 pages, 3 figure

    On the use of projectors for Hamiltonian systems and their relationship with Dirac brackets

    Full text link
    The role of projectors associated with Poisson brackets of constrained Hamiltonian systems is analyzed. Projectors act in two instances in a bracket: in the explicit dependence on the variables and in the computation of the functional derivatives. The role of these projectors is investigated by using Dirac's theory of constrained Hamiltonian systems. Results are illustrated by three examples taken from plasma physics: magnetohydrodynamics, the Vlasov-Maxwell system, and the linear two-species Vlasov system with quasineutrality
    corecore