4,458 research outputs found

    A General Effective Theory for Dense Quark Matter

    Full text link
    A general effective action for quark matter at nonzero temperature and/or nonzero density is derived. Irrelevant quark modes are distinguished from relevant quark modes, and hard from soft gluon modes, by introducing two separate cut-offs in momentum space, one for quarks, Λq\Lambda_q, and one for gluons, Λg\Lambda_g. Irrelevant quark modes and hard gluon modes are then exactly integrated out in the functional integral representation of the QCD partition function. Depending on the specific choice for Λq\Lambda_q and Λg\Lambda_g, the resulting effective action contains well-known effective actions for hot and/or dense quark matter, for instance the ``Hard Thermal Loop'' (HTL) or the ``Hard Dense Loop'' (HDL) action, as well as the high-density effective theory proposed by Hong and others.Comment: 10 pages, 6 figures, contribution to proceedings of SEWM 200

    Monitoring of crack growth in Ti-Al-4v alloy by the stress wave analysis technique

    Get PDF
    Stress wave analysis techniques for monitoring crack growth in Ti-6Al-4V alloy pressure vessel wall

    Neutrality of a magnetized two-flavor quark superconductor

    Full text link
    We investigate the effect of electric and color charge neutrality on the two-flavor color superconducting (2SC) phase of cold and dense quark matter in presence of constant external magnetic fields and at moderate baryon densities. Within the framework of the Nambu-Jona-Lasinio (NJL) model, we study the inter-dependent evolution of the quark's BCS gap and constituent mass with increasing density and magnetic field. While confirming previous results derived for the highly magnetized 2SC phase with color neutrality alone, we obtain new results as a consequence of imposing charge neutrality. In the charge neutral gapless 2SC phase (g2SC), a large magnetic field drives the color superconducting phase transition to a crossover, while the chiral phase transition is first order. At larger diquark-to-scalar coupling ratio GD/GSG_D/G_S, where the 2SC phase is preferred, we see hints of the Clogston-Chandrasekhar limit at a very large value of the magnetic field (B1019B\sim 10^{19}G), but this limit is strongly affected by Shubnikov de Haas-van Alphen oscillations of the gap, indicating the transition to a domain-like state.Comment: 19 pages, 7 figures, Matches with the published versio

    The role of Background Independence for Asymptotic Safety in Quantum Einstein Gravity

    Full text link
    We discuss various basic conceptual issues related to coarse graining flows in quantum gravity. In particular the requirement of background independence is shown to lead to renormalization group (RG) flows which are significantly different from their analogs on a rigid background spacetime. The importance of these findings for the asymptotic safety approach to Quantum Einstein Gravity (QEG) is demonstrated in a simplified setting where only the conformal factor is quantized. We identify background independence as a (the ?) key prerequisite for the existence of a non-Gaussian RG fixed point and the renormalizability of QEG.Comment: 2 figures. Talk given by M.R. at the WE-Heraeus-Seminar "Quantum Gravity: Challenges and Perspectives", Bad Honnef, April 14-16, 2008; to appear in General Relativity and Gravitatio

    Molecular Gas in Elliptical Galaxies: Distribution and Kinematics

    Full text link
    I present interferometric images (approx. 7" resolution) of CO emission in five elliptical galaxies and nondetections in two others. These data double the number of elliptical galaxies whose CO emission has been fully mapped. The sample galaxies have 10^8 to 5x10^9 solar masses of molecular gas distributed in mostly symmetric rotating disks with diameters of 2 to 12 kpc. Four out of the five molecular disks show remarkable alignment with the optical major axes of their host galaxies. The molecular masses are a few percent of the total dynamical masses which are implied if the gas is on circular orbits. If the molecular gas forms stars, it will make rotationally supported stellar disks which will be very similar in character to the stellar disks now known to be present in many ellipticals. Comparison of stellar kinematics to gas kinematics in NGC 4476 implies that the molecular gas did not come from internal stellar mass loss because the specific angular momentum of the gas is about three times larger than that of the stars.Comment: 47 pages, 6 tables, 27 figures. Accepted by AJ, scheduled for August 200

    Effective Average Action in N=1 Super-Yang-Mills Theory

    Full text link
    For N=1 Super-Yang-Mills theory we generalize the effective average action Gamma_k in a manifest supersymmetric way using the superspace formalism. The exact evolution equation for Gamma_k is derived and, introducing as an application a simple truncation, the standard one-loop beta-function of N=1 SYM theory is obtained.Comment: 17 pages, LaTeX, some remarks added, misprints corrected, to appear in Phys. Rev.

    Reconstruction of nuclear quadrupole interaction in (In,Ga)As/GaAs quantum dots observed by transmission electron microscopy

    Full text link
    A microscopic study of the individual annealed (In,Ga)As/GaAs quantum dots is done by means of high-resolution transmission electron microscopy. The Cauchy-Green strain-tensor component distribution and the chemical composition of the (In,Ga)As alloy are extracted from the microscopy images. The image processing allows for the reconstruction of the strain-induced electric-field gradients at the individual atomic columns extracting thereby the magnitude and asymmetry parameter of the nuclear quadrupole interaction. Nuclear magnetic resonance absorption spectra are analyzed for parallel and transverse mutual orientations of the electric-field gradient and a static magnetic field.Comment: 8 pages, 6 figure

    Renormalization Group Flow in Scalar-Tensor Theories. II

    Full text link
    We study the UV behaviour of actions including integer powers of scalar curvature and even powers of scalar fields with Functional Renormalization Group techniques. We find UV fixed points where the gravitational couplings have non-trivial values while the matter ones are Gaussian. We prove several properties of the linearized flow at such a fixed point in arbitrary dimensions in the one-loop approximation and find recursive relations among the critical exponents. We illustrate these results in explicit calculations in d=4d=4 for actions including up to four powers of scalar curvature and two powers of the scalar field. In this setting we notice that the same recursive properties among the critical exponents, which were proven at one-loop order, still hold, in such a way that the UV critical surface is found to be five dimensional. We then search for the same type of fixed point in a scalar theory with minimal coupling to gravity in d=4d=4 including up to eight powers of scalar curvature. Assuming that the recursive properties of the critical exponents still hold, one would conclude that the UV critical surface of these theories is five dimensional.Comment: 14 pages. v.2: Minor changes, some references adde
    corecore