12,194 research outputs found
Anomalous Radio-Wave Scattering from Interstellar Plasma Structures
This paper considers scattering screens that have arbitrary spatial
variations of scattering strength transverse to the line of sight, including
screens that are spatially well confined, such as disks and filaments. We
calculate the scattered image of a point source and the observed pulse shape of
a scattered impulse. The consequences of screen confinement include: (1) Source
image shapes that are determined by the physical extent of the screen rather
than by the shapes of much-smaller diffracting microirregularities. These
include image elongations and orientations that are frequency dependent. (2)
Variation with frequency of angular broadening that is much weaker than the
trademark \nu^{-2} scaling law (for a cold, unmagnetized plasma), including
frequency-independent cases; and (3) Similar departure of the pulse broadening
time from the usually expected \nu^{-4} scaling law. We briefly discuss
applications that include scattering of pulses from the Crab pulsar by
filaments in the Crab Nebula; image asymmetries from Galactic scattering of the
sources Cyg X-3, Sgr A*, and NGC 6334B; and scattering of background active
galactic nuclei by intervening galaxies. We also address the consequences for
inferences about the shape of the wavenumber spectrum of electron density
irregularities, which depend on scaling laws for the image size and the pulse
broadening. Future low-frequency (< 100 MHz) array observations will also be
strongly affected by the Galactic structure of scattering material. Our
formalism is derived in the context of radio scattering by plasma density
fluctuations. It is also applicable to optical, UV and X-ray scattering by
grains in the interstellar medium.Comment: 21 pages, LaTeX2e with AASTeX-4.0, 6 PostScript figures, accepted by
ApJ, revised version has minor changes to respond to referee comments and
suggestion
Non-Gaussian Radio-Wave Scattering in the Interstellar Medium
It was recently suggested by Boldyrev & Gwinn that the characteristics of
radio scintillations from distant pulsars are best understood if the
interstellar electron-density fluctuations that cause the time broadening of
the radio pulses obey non-Gaussian statistics. In this picture the density
fluctuations are inferred to be strong on very small scales (). We argue that such density structures could correspond to the ionized
boundaries of molecular regions (clouds) and demonstrate that the power-law
distribution of scattering angles that is required to match the observations
arises naturally from the expected intersections of our line of sight with
randomly distributed, thin, approximately spherical ionized shells of this
type. We show that the observed change in the time-broadening behavior for
pulsar dispersion measures is consistent
with the expected effect of the general ISM turbulence, which should dominate
the scattering for nearby pulsars. We also point out that if the clouds are
ionized by nearby stars, then their boundaries may become turbulent on account
of an ionization front instability. This turbulence could be an alternative
cause of the inferred density structures. An additional effect that might
contribute to the strength of the small-scale fluctuations in this case is the
expected flattening of the turbulent density spectrum when the eddy sizes
approach the proton gyroscale.Comment: 15 pages, 3 figures, accepted to Ap
Graded Exercise Therapy Guided Self-Help Trial for Patients with Chronic Fatigue Syndrome (GETSET): Protocol for a Randomized Controlled Trial and Interview Study
Background: Chronic fatigue syndrome, also known as myalgic encephalomyelitis (CFS/ME), is characterized by chronic disabling fatigue and other symptoms, which are not explained by an alternative diagnosis. Previous trials have suggested that graded exercise therapy (GET) is an effective and safe treatment. GET itself is therapist-intensive with limited availability.
Objective: While guided self-help based on cognitive behavior therapy appears helpful to patients, Guided graded Exercise Self-help (GES) is yet to be tested.
Methods: This pragmatic randomized controlled trial is set within 2 specialist CFS/ME services in the South of England. Adults attending secondary care clinics with National Institute for Health and Clinical Excellence (NICE)-defined CFS/ME (N=218) will be randomly allocated to specialist medical care (SMC) or SMC plus GES while on a waiting list for therapist-delivered rehabilitation. GES will consist of a structured booklet describing a 6-step graded exercise program, supported by up to 4 face-to-face/telephone/Skypeâ„¢ consultations with a GES-trained physiotherapist (no more than 90 minutes in total) over 8 weeks. The primary outcomes at 12-weeks after randomization will be physical function (SF-36 physical functioning subscale) and fatigue (Chalder Fatigue Questionnaire). Secondary outcomes will include healthcare costs, adverse outcomes, and self-rated global impression change scores. We will follow up all participants until 1 year after randomization. We will also undertake qualitative interviews of a sample of participants who received GES, looking at perceptions and experiences of those who improved and worsened.
Results: The project was funded in 2011 and enrolment was completed in December 2014, with follow-up completed in March 2016. Data analysis is currently underway and the first results are expected to be submitted soon.
Conclusions: This study will indicate whether adding GES to SMC will benefit patients who often spend many months waiting for rehabilitative therapy with little or no improvement being made during that time. The study will indicate whether this type of guided self-management is cost-effective and safe. If this trial shows GES to be acceptable, safe, and comparatively effective, the GES booklet could be made available on the Internet as a practitioner and therapist resource for clinics to recommend, with the caveat that patients also be supported with guidance from a trained physiotherapist. The pragmatic approach in this trial means that GES findings will be generalizable to usual National Health Service (NHS) practice
Exploring young people's and youth workers' experiences of spaces for ‘youth development’: creating cultures of participation
The paper focuses on the emergence of ‘positive youth development’ and its impact on older, more established practices of working with young people, such as youth work. Drawing on ethnographic fieldwork in England between 2004 and 2006, in particular young people's and youth workers' accounts of participating in youth work, the analysis engages with the social spaces in which youth work takes place and asks key questions about why young people might participate in youth spaces, what they get out of participating and how such spaces can promote cultures of participation. The analysis shows that such spaces provide young people and their communities with biographical continuity and time becomes a key component for sustaining such spaces. The argument is made for a more nuanced understanding of what young people get out of their participation in youth spaces, and for an epistemological approach to youth praxis that embraces the messiness and inequalities of lived experience
Designing cost-sharing methods for Bayesian games
We study the design of cost-sharing protocols for two fundamental resource allocation problems, the Set Cover and the Steiner Tree Problem, under environments of incomplete information (Bayesian model). Our objective is to design protocols where the worst-case Bayesian Nash equilibria, have low cost, i.e. the Bayesian Price of Anarchy (PoA) is minimized. Although budget balance is a very natural requirement, it puts considerable restrictions on the design space, resulting in high PoA. We propose an alternative, relaxed requirement called budget balance in the equilibrium (BBiE).We show an interesting connection between algorithms for Oblivious Stochastic optimization problems and cost-sharing design with low PoA. We exploit this connection for both problems and we enforce approximate solutions of the stochastic problem, as Bayesian Nash equilibria, with the same guarantees on the PoA. More interestingly, we show how to obtain the same bounds on the PoA, by using anonymous posted prices which are desirable because they are easy to implement and, as we show, induce dominant strategies for the players
Demagnetization of Quantum Dot Nuclear Spins: Breakdown of the Nuclear Spin Temperature Approach
The physics of interacting nuclear spins arranged in a crystalline lattice is
typically described using a thermodynamic framework: a variety of experimental
studies in bulk solid-state systems have proven the concept of a spin
temperature to be not only correct but also vital for the understanding of
experimental observations. Using demagnetization experiments we demonstrate
that the mesoscopic nuclear spin ensemble of a quantum dot (QD) can in general
not be described by a spin temperature. We associate the observed deviations
from a thermal spin state with the presence of strong quadrupolar interactions
within the QD that cause significant anharmonicity in the spectrum of the
nuclear spins. Strain-induced, inhomogeneous quadrupolar shifts also lead to a
complete suppression of angular momentum exchange between the nuclear spin
ensemble and its environment, resulting in nuclear spin relaxation times
exceeding an hour. Remarkably, the position dependent axes of quadrupolar
interactions render magnetic field sweeps inherently non-adiabatic, thereby
causing an irreversible loss of nuclear spin polarization.Comment: 15 pages, 3 figure
Finding Radio Pulsars in and Beyond the Galactic Center
Radio-wave scattering is enhanced dramatically for Galactic center sources in
a region with radius >~ 15 arc min. Using scattering from Sgr A* and other
sources, we show that pulse broadening for pulsars in the Galactic center is
{\em at least} 6.3 \nu^{-4} seconds (\nu = radio frequency in GHz) and is most
likely 50--200 times larger because the relevant scattering screen appears to
be within the Galactic center region itself. Pulsars beyond---but viewed
through---the Galactic center suffer even greater pulse broadening and are
angularly broadened by <~ 2 {\em arc min}. Periodicity searches at radio
frequencies are likely to find only long period pulsars and, then, only if
optimized by using frequencies >~ 7 GHz and by testing for small numbers of
harmonics in the power spectrum. The optimal frequency is where \Delta_{0.1} is the distance of the
scattering region from Sgr A* in units of 0.1 kpc, P is the period (seconds),
and \alpha is the spectral index. A search for compact sources using aperture
synthesis may be far more successful than searches for periodicities because
the angular broadening is not so large as to desensitize the survey. We
estimate that the number of {\em detectable} pulsars in the Galactic center may
range from <= 1 to 100, with the larger values resulting from recent, vigorous
starbursts. Such pulsars provide unique opportunities for probing the ionized
gas, gravitational potential, and stellar population near Sgr A*.Comment: 13 pages, 4 PS figures, LaTeX and requires AASTeX macro aas2pp4,
accepted by ApJ, also available as
http://astrosun.tn.cornell.edu/SPIGOT/papers/pulsar/gc_psr.web
Gene expression drives the evolution of dominance.
Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels
Optimization of inhomogeneous electron correlation factors in periodic solids
A method is presented for the optimization of one-body and inhomogeneous
two-body terms in correlated electronic wave functions of Jastrow-Slater type.
The most general form of inhomogeneous correlation term which is compatible
with crystal symmetry is used and the energy is minimized with respect to all
parameters using a rapidly convergent iterative approach, based on Monte Carlo
sampling of the energy and fitting energy fluctuations. The energy minimization
is performed exactly within statistical sampling error for the energy
derivatives and the resulting one- and two-body terms of the wave function are
found to be well-determined. The largest calculations performed require the
optimization of over 3000 parameters. The inhomogeneous two-electron
correlation terms are calculated for diamond and rhombohedral graphite. The
optimal terms in diamond are found to be approximately homogeneous and
isotropic over all ranges of electron separation, but exhibit some
inhomogeneity at short- and intermediate-range, whereas those in graphite are
found to be homogeneous at short-range, but inhomogeneous and anisotropic at
intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR
Superscaling in inclusive electron-nucleus scattering
We investigate the degree to which the scaling functions derived
from cross sections for inclusive electron-nucleus quasi-elastic scattering
define the same function for different nuclei. In the region where the scaling
variable , we find that this superscaling is experimentally realized
to a high degree.Comment: Corrected previously mislabeled figures and cross references; 9
pages, 4 color figures, using BoxedEPS and REVTeX; email correspondence to
[email protected]
- …