15,576 research outputs found

    Split-sideband spectroscopy in slowly modulated optomechanics

    Get PDF
    Optomechanical coupling between the motion of a mechanical oscillator and a cavity represents a new arena for experimental investigation of quantum effects on the mesoscopic and macroscopic scale.The motional sidebands of the output of a cavity offer ultra-sensitive probes of the dynamics. We introduce a scheme whereby these sidebands split asymmetrically and show how they may be used as experimental diagnostics and signatures of quantum noise limited dynamics. We show split-sidebands with controllable asymmetry occur by simultaneously modulating the light-mechanical coupling gg and ωM\omega_M - slowly and out of-phase. Such modulations are generic but already occur in optically trapped set-ups where the equilibrium point of the oscillator is varied cyclically. We analyse recently observed, but overlooked, experimental split-sideband asymmetries; although not yet in the quantum regime, the data suggests that split sideband structures are easily accessible to future experiments

    ³¹P Saturation Transfer and Phosphocreatine Imaging in the Monkey Brain

    Get PDF
    ³¹P magnetic resonance imaging with chemical-shift discrimination by selective excitation has been employed to determine the phosphocreatine (PCr) distribution in the brains of three juvenile macaque monkeys. PCr images were also obtained while saturating the resonance of the {gamma}-phosphate of ATP, which allowed the investigation of the chemical exchange between PCr and the {gamma}-phosphate of ATP catalyzed by creatine kinase. Superposition of the PCr images over the proton image of the same monkey brain revealed topological variations in the distribution of PCr and creatine kinase activity. PCr images were also obtained with and without visual stimulation. In two out of four experiments, an apparently localized decrease in PCr concentration was noted in visual cortex upon visual stimulation. This result is interpreted in terms of a possible role for the local ADP concentration in stimulating the accompanying metabolic response

    Optomechanical cooling of levitated spheres with doubly-resonant fields

    Full text link
    Optomechanical cooling of levitated dielectric particles represents a promising new approach in the quest to cool small mechanical resonators towards their quantum ground state. We investigate two-mode cooling of levitated nanospheres in a self-trapping regime. We identify a rich structure of split sidebands (by a mechanism unrelated to usual strong-coupling effects) and strong cooling even when one mode is blue detuned. We show the best regimes occur when both optical fields cooperatively cool and trap the nanosphere, where cooling rates are over an order of magnitude faster compared to corresponding single-sideband cooling rates.Comment: 8 Pages, 7 figure

    Coalescence of Two Spinning Black Holes: An Effective One-Body Approach

    Full text link
    We generalize to the case of spinning black holes a recently introduced ``effective one-body'' approach to the general relativistic dynamics of binary systems. The combination of the effective one-body approach, and of a Pad\'e definition of some crucial effective radial functions, is shown to define a dynamics with much improved post-Newtonian convergence properties, even for black hole separations of the order of 6GM/c26 GM / c^2. We discuss the approximate existence of a two-parameter family of ``spherical orbits'' (with constant radius), and, of a corresponding one-parameter family of ``last stable spherical orbits'' (LSSO). These orbits are of special interest for forthcoming LIGO/VIRGO/GEO gravitational wave observations. It is argued that for most (but not all) of the parameter space of two spinning holes the effective one-body approach gives a reliable analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a detection bias, in LIGO/VIRGO/GEO observations, favouring spinning black hole systems, and makes it urgent to complete the conservative effective one-body dynamics given here by adding (resummed) radiation reaction effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never approaches extremality.Comment: 26 pages, two eps figures, accepted in Phys. Rev. D, minor updating of the text, clarifications added and inclusion of a few new reference

    CP25 Further Observations on Cider Sickness

    Get PDF

    CP24The principles and practice of cider making

    Get PDF

    CP28 The microbiology of cider-making

    Get PDF

    31P saturation transfer and phosphocreatine imaging in the monkey brain.

    Full text link

    Three-Dimensional Mechanics of Yakutat Convergence in the Southern Alaskan Plate Corner

    Get PDF
    Three-dimensional numerical models are used to investigate the mechanical evolution of the southern Alaskan plate corner where the Yakutat and the Pacific plates converge on the North American plate. The evolving model plate boundary consists of Convergent, Lateral, and Subduction subboundaries with flow separation of incoming material into upward or downward trajectories forming dual, nonlinear advective thermal/mechanical anomalies that fix the position of major subaerial mountain belts. The model convergent subboundary evolves into two teleconnected orogens: Inlet and Outlet orogens form at locations that correspond with the St. Elias and the Central Alaska Range, respectively, linked to the East by the Lateral boundary. Basins form parallel to the orogens in response to the downward component of velocity associated with subduction. Strain along the Lateral subboundary varies as a function of orogen rheology and magnitude and distribution of erosion. Strain-dependent shear resistance of the plate boundary associated with the shallow subduction zone controls the position of the Inlet orogen. The linkages among these plate boundaries display maximum shear strain rates in the horizontal and vertical planes where the Lateral subboundary joins the Inlet and Outlet orogens. The location of the strain maxima shifts with time as the separation of the Inlet and Outlet orogens increases. The spatiotemporal predictions of the model are consistent with observed exhumation histories deduced from thermochronology, as well as stratigraphic studies of synorogenic deposits. In addition, the complex structural evolution of the St Elias region is broadly consistent with the predicted strain field evolution. Citation: Koons, P. O., B. P. Hooks, T. Pavlis, P. Upton, and A. D. Barker (2010), Three-dimensional mechanics of Yakutat convergence in the southern Alaskan plate corner, Tectonics, 29, TC4008, doi: 10.1029/2009TC002463
    • …
    corecore