273 research outputs found
Solid-state carbon-based textile supercapacitors for energy storage applications
In this work, carbon-based conducting electrodes based on two different types of carbon nanofibers (CNF) have been produced by the dip and dry coating method onto cotton substrates. Furthermore, activated carbon (Norit A Supra Eur) and manganese oxide (MnO2) have been subsequenlty added to the CNF-based dip-coated cotton fabrics electrodes and asymmetric supercapacitors have been constructed and tested with the focus of obtaining devices with increased capacitive performance. In particular, the carbon-based active layer was prepared by spreading on the CNF-based electrodes a slurry containing the activated carbon (AC) material, graphite fibres, polyvinylidene difluoride (PVDF) as binder and N,N dimethylacetamide (DMA) solvent, whereas the MnO2 based active layer was prepared by spreading on the CNF-based textile electrodes a slurry formed by MnO2, carbon black, graphite fibers, PVDF and DMA. A solution of 1M Na2SO4 impregnated in porous paper separator (Nippon Kodoshi Corportion, Japan) was employed as neutral aqueous electrolyte. The supercapacitors were electrochemical investigated by cyclic voltammetry (CV), galvanostatic charge/discharge (GCD) and electrochemical impedance spectroscopy (EIS).
The results indicated that with this particular combination of carbon and manganese oxide active layers on CNF-based cotton fabrics it was possible to obtain specific capacitance of 100 F/g and a high specific energy density of 10 Wh/kg.This work was partly financed by FEDER funds through the Competitivity Factors Operational Programme - COMPETE and by national funds through FCT – Foundation for Science and Technology within the scope of the project POCI-01-0145-FEDER-007136. A. J. Paleo acknowledges the support of COST Action CA15107- Multi-Functional Nano-Carbon Composite Materials Network (MultiComp) by means of a short term scientific mission (STSM).info:eu-repo/semantics/publishedVersio
Lifetime assessment of solid-state hybrid supercapacitors based on cotton fabric electrodes
Electrodes based on activated carbon and manganese oxide coated on a cotton woven fabric were developed and investigated. The electrodes were then assembled with two polymer electrolyte membranes, Nafion®115 and Aquivion®E87-05S, and two different supercapacitors were produced with specific capacitances and energy densities of 130 and 132 F g−1, and 11.5 and 11.7 Wh kg−1, respectively. Furthermore, a new durability methodology, which combines galvanostatic charge/discharge cycles together with potentiostatic floating conditions, was used to get insight into their electrochemical performance under stringent conditions. The supercapacitor assembled with Nafion®115 electrolyte worked successfully for 10 k cycles and 140 h under a constant voltage of 1.6 V (floating condition), whereas the supercapacitor assembled with Aquivion®E87-05S electrolyte worked successfully for more than 15 k cycles and 210 h, without any appreciable degradation of their electrochemical properties. In summary, hybrid solid-state supercapacitors based on electrodes produced by simple methodologies and low-cost materials, and with long durability performance under very harsh conditions were developed and analysed for their potential utilization as flexible energy storage devices.This work was supported by Project UID/CTM/00264/2019 of 2C2T
– Centro de Ciência e Tecnologia Têxtil, funded by National Founds
through FCT/MCTES. This research was also partially supported by the
Cost Action 15107, Grant No. ECOST-STSM-CA15107-300118-092731
Supercapacitors based on AC/MnO2 deposited onto dip-coated carbon nanofiber cotton fabric electrodes
This work introduces the preparation of flexible carbon composite electrodes based on the top-down approach starting from the dip-coating of carbon nanofibers (CNFs) onto a cotton fabric. On these so-obtained conductive cotton fabrics, further layers of activated carbon and manganese oxide (MnO2) materials were subsequently added to enhance the electrochemical performances of negative and positive electrodes. At the end, two different types of asymmetric supercapacitors (SCs) were assembled with those textile electrodes by using porous paper and Nafion-Na ion-exchange membranes as separators. The different SCs were electrochemically characterized by means of cyclic voltammetry (CV), galvanostatic charge/discharge (G–CD) and electrochemical impedance spectroscopy (EIS). These hybrid carbon-based textile SCs exhibited capacitance performance of 138 and 134 F g–1 with the porous paper and Nafion membrane, respectively, and low self-discharge rates. Furthermore, in this study is considered the combination of two methods (cycling and floating) for studying the long-term durability tests of SCs. In particular, the floating methodology utilizes much more harsh conditions than the common cycling based on G-CD tests at high currents usually discussed in literature. The solid-state (Nafion membrane) hybrid device demonstrated very long durability with 10 K cycles and additional 270 h at a constant voltage of 1.6 V. In summary, the hybrid SCs fabricated with low cost materials and simple methodologies reported in this study showed very promising results for flexible energy storage applications.This work was partly financed by FEDER funds through the
Competitivity Factors Operational Programme - COMPETE and by
national funds through FCT – Foundation for Science and Technology
(project POCI-01-0145-FEDER-007136). A.J. Paleo acknowledges the
European COST Action CA15107- Multi-Functional Nano-Carbon
Composite Materials Network (MultiComp) for its support with a
Short Term Scientific Mission (STSM) grant at CNR-ITAE of
Messina
Detection of the Cherenkov light diffused by Sea Water with the ULTRA Experiment
The study of Ultra High Energy Cosmic Rays represents one of the most
challenging topic in the Cosmic Rays and in the Astroparticle Physics fields.
The interaction of primary particles with atmospheric nuclei produces a huge
Extensive Air Shower together with isotropic emission of UV fluorescence light
and highly directional Cherenkov photons, that are reflected/diffused
isotropically by the impact on the Earth's surface or on high optical depth
clouds. For space-based observations, detecting the reflected Cherenkov signal
in a delayed coincidence with the fluorescence light improves the accuracy of
the shower reconstruction in space and in particular the measurement of the
shower maximum, giving a strong signature for discriminating hadrons and
neutrinos, and helping to estimate the primary chemical composition. Since the
Earth's surface is mostly covered by water, the ULTRA (UV Light Transmission
and Reflection in the Atmosphere)experiment has been designed to provide the
diffusing properties of sea water, overcoming the lack of information in this
specific field. A small EAS array, made up of 5 particle detectors, and an UV
optical device, have been coupled to detect in coincidence both electromagnetic
and UV components. The detector was in operation from May to December, 2005, in
a small private harbor in Capo Granitola (Italy); the results of these
measurements in terms of diffusion coefficient and threshold energy are
presented here.Comment: 4 pages, 3 figures, PDF format, Proceedings of 30th ICRC,
International Cosmic Ray Conference 2007, Merida, Yucatan, Mexico, 3-11 July
200
The ARGO-YBJ Experiment Progresses and Future Extension
Gamma ray source detection above 30TeV is an encouraging approach for finding
galactic cosmic ray origins. All sky survey for gamma ray sources using wide
field of view detector is essential for population accumulation for various
types of sources above 100GeV. To target the goals, the ARGO-YBJ experiment has
been established. Significant progresses have been made in the experiment. A
large air shower detector array in an area of 1km2 is proposed to boost the
sensitivity. Hybrid detection with multi-techniques will allow a good
discrimination between different types of primary particles, including photons
and protons, thus enable an energy spectrum measurement for individual specie.
Fluorescence light detector array will extend the spectrum measurement above
100PeV where the second knee is located. An energy scale determined by balloon
experiments at 10TeV will be propagated to ultra high energy cosmic ray
experiments
Results from the ULTRA experiment in the framework of the EUSO project
The detection of Cerenkov light from EAS in a delayed coincidence with fluorescence light gives a strong signature to discriminate protons and neutrinos in cosmic rays. For this purpose, the ULTRA experiment has been designed with 2 detectors: a small EAS array (ETscope) and an UV optical device including wide field (Belenos) and narrow field (UVscope) Cerenkov light detectors. The array measures the shower size and the arrival direction of the incoming EAS, while the UV devices, pointing both to zenith and nadir, are used to determine the amount of direct and diffused coincident Cerenkov light. This information, provided for different diffusing surfaces, will be used to verify the possibility of detecting from Space the Cerenkov light produced by UHECRs with the EUSO experiment, on board the ISS
Observation of CR Anisotropy with ARGO-YBJ
The measurement of the anisotropies of cosmic ray arrival direction provides
important informations on the propagation mechanisms and on the identification
of their sources. In this paper we report the observation of anisotropy regions
at different angular scales. In particular, the observation of a possible
anisotropy on scales between 10 and 30
suggests the presence of unknown features of the magnetic fields the charged
cosmic rays propagate through, as well as potential contributions of nearby
sources to the total flux of cosmic rays. Evidence of new weaker few-degree
excesses throughout the sky region R.A. is
reported for the first time.Comment: Talk given at 12th TAUP Conference 2011, 5-9 September 2011, Munich,
German
Observation of TeV gamma-rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment
We report the observation of a very high energy \gamma-ray source, whose
position is coincident with HESS J1841-055. This source has been observed for
4.5 years by the ARGO-YBJ experiment from November 2007 to July 2012. Its
emission is detected with a statistical significance of 5.3 standard
deviations. Parameterizing the source shape with a two-dimensional Gaussian
function we estimate an extension \sigma=(0.40(+0.32,-0.22}) degree, consistent
with the HESS measurement. The observed energy spectrum is dN/dE =(9.0-+1.6) x
10^{-13}(E/5 TeV)^{-2.32-+0.23} photons cm^{-2} s^{-1} TeV^{-1}, in the energy
range 0.9-50 TeV. The integral \gamma-ray flux above 1 TeV is 1.3-+0.4 Crab
units, which is 3.2-+1.0 times the flux derived by HESS. The differences in the
flux determination between HESS and ARGO-YBJ, and possible counterparts at
other wavelengths are discussed.Comment: 17 pages, 4 figures, have been accepted for publication in Ap
- …