12 research outputs found

    Thermally robust spin correlations between two Rb-85 atoms in an optical microtrap

    Get PDF

    Time-resolved observation of spin-charge deconfinement in fermionic Hubbard chains

    No full text
    Elementary particles such as the electron carry several quantum numbers, for example, charge and spin. However, in an ensemble of strongly interacting particles, the emerging degrees of freedom can fundamentally differ from those of the individual constituents. Paradigmatic examples of this phenomenon are one-dimensional systems described by independent quasiparticles carrying either spin (spinon) or charge (holon). Here we report on the dynamical deconfinement of spin and charge excitations in real space following the removal of a particle in Fermi-Hubbard chains of ultracold atoms. Using space- and time-resolved quantum gas microscopy, we track the evolution of the excitations through their signatures in spin and charge correlations. By evaluating multi-point correlators, we quantify the spatial separation of the excitations in the context of fractionalization into single spinons and holons at finite temperatures

    Imaging magnetic polarons in the doped Fermi-Hubbard model

    No full text
    corecore