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Realizing the symmetry-protected Haldane 
phase in Fermi–Hubbard ladders

Pimonpan Sompet1,2,3,10 ✉, Sarah Hirthe1,2,10, Dominik Bourgund1,2,10, Thomas Chalopin1,2, 
Julian Bibo2,4, Joannis Koepsell1,2, Petar Bojović1,2, Ruben Verresen5, Frank Pollmann2,4, 
Guillaume Salomon1,2,6,7, Christian Gross1,2,8, Timon A. Hilker1,2 & Immanuel Bloch1,2,9 ✉

Topology in quantum many-body systems has profoundly changed our understanding 
of quantum phases of matter. The model that has played an instrumental role in 
elucidating these effects is the antiferromagnetic spin-1 Haldane chain1,2. Its ground 
state is a disordered state, with symmetry-protected fourfold-degenerate edge states 
due to fractional spin excitations. In the bulk, it is characterized by vanishing two-point 
spin correlations, gapped excitations and a characteristic non-local order parameter3,4. 
More recently it has been understood that the Haldane chain forms a specific  
example of a more general classification scheme of symmetry-protected topological 
phases of matter, which is based on ideas connected to quantum information and 
entanglement5–7. Here, we realize a finite-temperature version of such a topological 
Haldane phase with Fermi–Hubbard ladders in an ultracold-atom quantum simulator. 
We directly reveal both edge and bulk properties of the system through the use of 
single-site and particle-resolved measurements, as well as non-local correlation 
functions. Continuously changing the Hubbard interaction strength of the system 
enables us to investigate the robustness of the phase to charge (density) fluctuations 
far from the regime of the Heisenberg model, using a novel correlator.

Topological phases of matter often share a deep connection between 
their bulk and edge properties8,9. In the case of the Haldane chain, the 
bulk exhibits a hidden antiferromagnetic (AFM) order characterized by 
AFM correlations interlaced with an arbitrary number of Sz = 0 elements, 
where Sz denotes the spin component in the z-direction. This pattern can 
only be revealed through non-local string correlations that are sensitive 
to the local spin states, which, however, require detection of the quantum 
many-body system with microscopic resolution. Although this was not 
possible in early experiments on spin-1 chains, evidence for a spin gap, 
as well as spin-1/2 localized edge states, was found using neutron scatter-
ing10,11 or electron resonance experiments12,13 while not directly probing 
this hidden order or spatially resolving the edge states. Recent develop-
ments in quantum simulations enable one to go beyond such solid-state 
bulk measurements by observing quantum many-body systems with 
single-site resolution14–18 and in a fully spin- and density-resolved way19,20. 
This provides a rich diagnostic tool to obtain a direct microscopic pic-
ture of the hidden order in experiments21,22. The power of this technique 
has also been demonstrated recently in a study that was able to reveal 
a symmetry-protected topological (SPT) phase in the hardcore boson 
Su–Schrieffer–Heeger (SSH) model using Rydberg atoms23. Here we 
expand on those results by realizing a finite-temperature version of the 
Haldane phase in a spin system with tuneable coupling strength, system 
size and controlled charge fluctuations. We show this by measuring both 
topological and trivial string order parameters.

An instructive way to engineer the Haldane phase in systems of spin-
1/2 fermions is on the basis of the AKLT model4,24, in which a spin-1 parti-
cle is formed out of two spin-1/2 particles. Thus, spin-1/2 ladder systems 
emerge as an experimentally realizable platform for the Haldane phase. 
Whereas a natural implementation with spin-1 particles on individual 
rungs requires ferromagnetic rung couplings and antiferromagnetic 
leg couplings, a much wider variety of couplings in spin-1/2 quantum 
ladders feature the Haldane phase25,26. This includes the antiferromag-
netic Heisenberg case, which we realize here as the strong-interaction 
limit of the Fermi–Hubbard model.

In our experiment, we prepare such ladders by adiabatically loading 
a spin-balanced mixture of the two lowest hyperfine states of 6Li into an 
engineered lattice potential (Methods). As illustrated in Fig. 1a, we real-
ize four isolated two-leg ladders with a variable number (L) of unit cells 
(where L is therefore also equivalent to length), surrounded by a low- 
density bath of particles27. The unit cells are chosen to be either along 
the rungs of the ladders (vertical unit cell, Fig. 1b) or along the diagonals 
(diagonal unit cells, Fig. 1c). The edges of the ladders are then engineered 
to match the choice of unit cell: straight edges are chosen for vertical 
unit cells, whereas one site is blocked on each edge in the case of diago-
nal unit cells. The atoms in the lowest band of the optical lattice are well 
described by the Fermi–Hubbard model, with tunnelling energies, ∥t  
(chain), t⊥ (rung), and on-site interactions U. For half-filling and at strong 
U t/ ≈ 13,⊥∥ , used throughout most of our experiments (see Methods for 
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details), density fluctuations are suppressed and the spin ladder realizes 
the Heisenberg model28 with Hamiltonian:

∑ ∑H J JSS SS SS SSˆ = ˆ ⋅ ˆ + ˆ ⋅ ˆ
(1)x L

y A B

x y x y
x L
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, +1, ⊥
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, ,

with positive leg and rung couplings, J t U= 4 /,⊥ ,⊥
2

∥ ∥  and the spin-1/2 
operators Ŝx y,  at site (x, y), with A, B denoting the two legs of the ladder.

The topological properties are most easily explained in the limit 
≫ ∥J J⊥ , where strong spin singlets form along the rungs and the system 

exhibits an energy gap of J⊥. The behaviour on the edges of the ladder 
then depends on how the system is terminated, and therefore on which 
unit cells have been chosen. For diagonal unit cells (Fig. 1b), two unpaired 
spin-1/2 particles remain and the many-body system has a fourfold degen-
eracy that is only weakly lifted by an edge-to-edge coupling, which van-
ishes exponentially with system size (Supplementary Information).  
In the trivial case of vertical unit cells (Fig. 1c), all spins pair into singlets 

and the ground state is unique. These descriptions remain valid even for 
weaker J J/⊥ ∥, where the singlet alignment may change between vertical 
and horizontal, but any line between two rungs cuts an even number of 
singlets29,30.

To make the analogy between the spin-1/2 ladder and the Haldane 
integer chain more apparent, we switch to a description in terms  
of total spin per kth unit cell, ˆ = ˆ + ˆ

k k k,A ,BS S S , where the indices (A, B) 
indicate the two spin-1/2 particles in the same unit cell, making an 
integer spin. In the diagonal unit cell such a system shows a high (≥80%) 
triplet fraction26 (Supplementary Information). We note that this spin 
ladder can be adiabatically connected to a spin-1 chain by including 
ferromagnetic couplings within the unit cell25. However, having a high 
triplet fraction is not essential for having a well-defined Haldane phase, 
as both systems share the same universal SPT features26.

The defining property of the Haldane SPT phase is that it is an integer-
spin chain with spin-1/2 edge modes: the bulk SO(3) symmetry is said 
to fractionalize into SU(2) symmetry at the edge. It has no spontaneous 
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Fig. 1 | Probing topological phases in spin-1/2 ladders of cold atoms.  
a, Realization of tailored spin-1/2 ladders in a single plane of a 3D optical lattice 
with a potential shaped by a DMD. The dilute wings of the potential are well 
separated from the homogeneous ladder systems. Using quantum gas 
microscopy, we obtain fully spin- and density-resolved images of the system. 
The inset shows a single-shot fluorescence image of the prepared ladder 
without spin resolution. b, c, Connecting spin-1/2 ladders to integer-spin chains 
by grouping pairs of spins in unit cells. For diagonal unit cells (b) the AFM 
Heisenberg ladder adiabatically connects to the Haldane spin-1 chain showing 
spin-1/2 edge states and hidden long-range order (that is, AFM order 
interspersed with Sz = 0 unit cells). For vertical unit cells (c), the system is in the 
topologically trivial phase dominated by singlets on the rungs, forming a 
spin-0 chain. We adapt the edges of the system to match the respective unit 
cell, that is straight edges for vertical unit cells and tilted edges for diagonal 
unit cells, which we realize by blocking one site on each end. The energy spectra 
of the systems grouped by total magnetization Mz display gapped fourfold 
near-degenerate ground states for the topological configuration and a single 
ground state for the trivial one. Sketch for L = 7.
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Fig. 2 | Trivial versus topological configurations. a, The atomic density 
distribution ⟨n̂⟩ of ladders with diagonal and vertical unit cells. b, The 
amplitudes of the spin-string correlator gS z Rz,  (green circles) and the 
string-only correlator g Rz,�  (grey squares) observed as a function of the spin 
distance over d unit cells. The cartoon illustrates the unit cells, the total spin Sz 
per unit cell and the string correlators for a subsystem with d = 3. In the trivial 
configuration (rung unit cells), 

�
g d| ( )|Rz,  is well above zero, whereas g d| ( )|S z Rz,  is 

rapidly vanishing at d > 1. By contrast, for the topological configuration 
(diagonal unit cells), g d| ( )|S z Rz, , shows a long-range correlation, whereas  
g d| ( )|Rz,�  is close to zero. In both cases, the two-point spin–spin correlation C(d) 
decays rapidly to zero as a function of the distance d (insets). The correlators 

�
g g,Rz S z Rz, ,  and C(d) are evaluated for fixed total magnetization m z   = 0.  
c, Amplitudes of the rung- and inversion-averaged local magnetizations m x( )z  
plotted as a function of position x along the chains for different m z. In the 
unbalanced spin sector of the topological configuration (m z  = ±1), the result 
displays a localization of the excess spins at the edges, signalling the presence 
of edge states. All data were taken with ∥J J/ = 1.3(2)⊥ . Error bars denote one 
standard error of the mean (s.e.m.) and are smaller than their marker size if not 
visible.
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symmetry breaking and thus the spin correlation function S S⟨ ˆ ˆ ⟩k
z

k d
z

+  is 
short range. Instead, the aforementioned symmetry fractionalization6,7 
can be detected in the bulk using string order parameters3,31:

∏g d U( ) = ˆ ˆ ˆ (2)U k
l k

k d

l k d,
= +1

+ −1

+









O OO

with an on-site symmetry Ûl and endpoint operator ˆ kO , where l denotes 
the unit cell and d the string distance (Fig. 2 and Supplementary Infor-
mation). This correlator probes the transformation behaviour of the 
bulk under a symmetry Ûl; for example, a spin rotation around the z 
axis by π, R i Sˆ ≡ exp( π ˆ )l

z
l
z

. The pure-string correlator 
�

g d( )R, z , where 
Ô = 1k  and U Rˆ = ˆl l

z
, is non-zero for ≫d 1 if the edge does not have half-

integer spins31. This is the case for the topologically trivial configuration 
but not for the Haldane phase, in which the symmetry is fractionalized. 
The spin-string operator g d( )S R,z z (ref. 3), Sˆ = ˆk k

z
O , exhibits the opposite 

behaviour and is non-zero only in the Haldane phase (see Supplemen-
tary Information for details about the symmetries of the Haldane 
phase). Thus we can identify the Haldane phase by comparing the two 
string correlators gS R,z z  and g R, z�

, and observe opposite behaviour in 
the two different regimes.

Another perspective on gS R,z z  can be gained by recognizing it as a 
normal two-point correlator at distance d, which ignores all spin-0 
contributions along the way (‘squeezed space’22,32). In the underlying 
spin-1/2 system, this order stems from N − 1 consecutive rungs domi-
nantly consisting of N − 1 singlets and two spin-1/2 states, which have 
a combined total spin of +1, 0 or −1.

To observe the characteristics of the SPT phase, we prepare a two-leg 
ladder of length L = 7 and ∥J J/ = 1.3(2)⊥  in both the topological and the 
trivial configuration. The tailored potential yields a homogeneous 
filling of the system with sharp boundaries (Fig. 2a), which is character-
ized by a remaining density variance over the system of 2 × 10−4. To 
focus on the spin physics, we select realizations with N N L+ = 2↑ ↓  per 
ladder. Additionally, we exclude ladders with an excessive number of 
doublon–hole fluctuations and do not consider strings with odd atom 
numbers in the string or the endpoints of the correlator (Methods). 
We characterize the spin-balanced ladder systems M N N( ≡ ( − )/2 = 0)z

↑ ↓  
by evaluation of the string order parameters, as defined in equation (2). 
In the topological configuration, we observe fast decay of gS R,z z  over 
a distance of approximately one site and a long-range correlation up 
to d = 6, with a final value of ≃g 0.1S R,z z  (Fig. 2b). In contrast, for the 
trivial configuration, the correlation decays rapidly to zero as a func-
tion of the string correlator length. The opposite behaviour is seen for 

�
g d( )R, z , demonstrating the hidden correlations expected for both 
phases.

Furthermore, the two-point spin correlation, 
�

C d g d( ) ≡ ( )=S ,z  
S S⟨ ˆ ˆ ⟩,k

z
k d
z

+  yields only the short-range AFM correlation characteristic for 
a gapped phase (see insets in Fig. 2b). It is interesting to note that at 
the largest distance in the topological case, C(d = 6) displays a clear 
(negative) correlation between the two edge spins, despite small cor-
relations at shorter distances. This (classical) correlation confirms the 
existence of a non-magnetized bulk, such that spins on the edges of 
the system must be of opposite direction at global Mz = 0.

We probe the edges explicitly by measuring the amplitude of the local 
rung-averaged magnetization mz(x) as a function of rung position x for 
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Fig. 3 | Influence of spin-coupling strength on the string order parameters 
and the edge states. a, The two string order parameters, gS z Rz,  (green) and 

�
g Rz,  (grey), for both trivial (left) and topological (right) configurations 
measured as a function of J J J/( + )⊥ ⊥ ∥ . Both gS z Rz,  and g Rz,�  stay finite in their 
respective phases and are largely consistent with zero in the other phase. The 
data were taken at a chain length of L = 5 except for one data point marked by a 
triangle at L = 7. Shaded curves are the ED results of the two order parameters at 
finite entropy per particle, S/N = (0.3−0.45) kB and L = 5. The inset shows the 
measured gS z Rz,  as a function of the chain length L at ∥J J/ = 1.3(2)⊥  (that is, 
J J J/( + ) = 0.56(4)⊥ ⊥ ∥ ). The decay in the magnitude of the string order parameter 
with length is expected at finite temperatures in quantitative agreement with 

ED results (lines) at S/N ≈ 0.4 kB. b, Edge state localization at ∥J J/ = 1.3(2)⊥ .  
In the m z  = ±1 spin sectors of the topological configuration, the unit cell local 
magnetization m k( )z  at chain position k shows excess magnetization  
localized at the edges for different lengths. The black line is a fit to our 
inversion-averaged data. c, The localization length ξ of the edge states 
increases with the leg coupling J∥ but saturates at a value set by temperature 
and system size L = 5. Lines are ED results at S/N = 0.3 kB and 0 kB. The inset 
shows the independence of ξ with respect to L extracted from the plots in b, as 
well as ED results for S/N = 0.3 kB. Error bars denote one standard error of the 
mean (s.e.m) and are smaller than their marker size if not visible.
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different sectors of the ladder magnetization M z (Fig. 2c). In the case of 
an imbalanced spin mixture with M z = ±1, we see that the two end sites 
exhibit on average a higher magnetization than the bulk rungs in the 
topological configuration. This is consistent with the bulk of the ground 
states of both phases forming a global singlet, and only the edges of the 
topological phase carrying an excess spin-1/2 without energy cost. The 
measured bulk magnetization can be attributed to finite-temperature 
effects (Supplementary Information).

The SPT phase is expected to be robust26 on variation of the ratio 

∥J J/⊥ , but maintains a finite gap in the system. We realize both the triv-
ial and topological configuration with different ∥t t/⊥  at almost fixed U 
and study the string correlators at maximal distance (L − 1) versus J J/⊥ ∥ 
(Fig. 3a). For the topological configuration with diagonal unit cells, we 
observe ≃g L( − 1) 0R, z�

 and g| | > 0S R,z z  for all ∥J J/⊥  with a maximum 
around J J/ 1.3(2)⊥ ≃∥  (that is, J J J/( + ) 0.56(4)⊥ ⊥ ≃∥ ), whereas for the 
trivial case the role of the correlators is reversed. Both phases con-
tinuously connect in the limit of two disconnected chains at J = 0⊥ . 
These observations demonstrate qualitatively all the key predictions 
of the antiferromagnetic spin-1/2 ladder at temperature T = 0 (ref. 26) 
and the strengths of the measured correlations are consistent with 
exact diagonalization (ED) calculations using an entropy per particle 
S N k/ = (0.3 − 0.45) B (shaded lines in Fig. 3a).

We reveal these features despite the finite temperature in our system, 
which would destroy the long-range hidden order in an infinite system. 
The total entropy in our system is, however, still low enough to yield a 
large fraction of realizations of the topological ground state. In larger 
systems, the total number of thermal excitations grows (at fixed entropy 
per particle) and the non-local correlator g L| ( − 1)|S R,z z  decreases (see 
inset of Fig. 3a), consistent with vanishing correlations in the thermody-
namic limit, thus yielding a restriction on our system size at our level of 
experimental precision and entropy per particle (Supplementary Infor-
mation). Finite size effects are explored in detail in the Supplementary 
Information. We note that the difference between the SPT phase and the 
trivial phase is here clearly shown by considering both gS R,z z  and g R, z�

.
To investigate the localization length of the edge states, we evaluate 

our data for m z = ±1 and plot the local magnetization per unit cell m z

(k) for different system sizes (Fig. 3b). Because of the singlets in the 
bulk, the excess spin is most likely to be found at the edges of the system. 
This spin partly polarizes the neighbouring sites antiferromagnetically, 
leading to an exponentially localized net magnetization with  
AFM substructure33. The data are well described by the fit function 
m k m m( ) = + (( − 1) e + ( − 1) e )z k k ξ L k L k ξ

B E
− / − −1 −( − −1)/  with free bulk mag-

netization mB, edge magnetization mE and decay length ξ. In Fig. 3c, we 
show how this localization length ξ decreases as we approach the limit 
of rung singlets, J J⊥ ≫ ∥. Comparison with ED lets us identify two 
regimes: at ∥J J≳⊥ , the measured ξ drops with larger J⊥ and coincides 
with theory independent of temperature, whereas at low J∥ thermal 
effects dominate, limiting the increase of ξ to three sites for our system 
(Supplementary Information).

Thus far, we have worked in the Mott limit where density fluctuations 
can be ignored, such that the spin Hamiltonian, equation (1), is a good 
effective description of the Fermi–Hubbard ladder. However, it is known 
that the Haldane SPT phase can be unstable to density fluctuations34–36. 
By reducing U t/ ∥, the symmetry in the unit cell in the bulk changes from 
SO(3) to SU(2), as it now may contain both half-integer and integer total 
spin. This effectively removes the distinction between bulk and edge 
(Supplementary Information). This means that the edge mode and string 
order parameter are no longer topologically non-trivial, which is also 
manifested in the fact that the two phases can be adiabatically connected 
by tuning through a low- ∥U t/  regime if one breaks additional symmetries 
but preserves spin-rotation symmetry34–36. In particular, the above string 
orders lose their distinguishing power: gS R,z z  and g R, z�

 will both generi-
cally have long-range order away from the Mott limit34.

Intriguingly, despite the breakdown of the above symmetry argu-
ment and string order parameter, the Hubbard ladder (with diagonal 

unit cell) remains a non-trivial SPT phase due to its sublattice sym-
metry. This symmetry is a direct consequence of the ladder being 
bipartite (see Supplementary Information for details). It is simplest 
to see that this protects the SPT phase in the limit U = 0, where the 
two spin species decouple, such that our model reduces to two cop-
ies of the SSH chain37. It is known that such a stack remains in a non-
trivial SPT phase in the presence of interactions, namely U ≠ 0 (ref. 38).  
Moreover, together with the parity symmetry of spin-down particles, 
P i n nˆ ≡ exp[ π( ˆ + ˆ )]l l l

↓
,A

↓
,B

↓ , it then gives rise to a different string order 
parameter: the topological phase is characterized by long-range order 
in gS P,z ↓, whereas it has vanishing correlations for g P, ↓�

, with the roles 
being reversed in the trivial phase. This novel string order is derived 
in the Supplementary Information. Remarkably, in the Heisenberg 
limit, it coincides with the conventional string order parameter used 
before.

In the topological phase it is meaningful to normalize gS P,z ↓  to 
∼g ηg=S P S P, ,z z↓ ↓ with η S S= ⟨| ˆ || ˆ |⟩k

z
k d
z−1

+ , which effectively excludes end-
points with spin Sz = 0. Indeed, we find unchanged string correlations 
gS P,z ↓
∼  and g P, ↓�

 down to the lowest experimentally explored value 
U t/ = 2.5(2)∥  (Fig. 4a, b) and edge state signals down to U t/ = 5.0(3)∥  
(Fig. 4c). Density matrix renormalization group (DMRG) calculations 
for L → ∞ confirm non-zero gS P,z ↓

∼  (L−1) at T = 0 and for all rung-coupling 
strengths (Fig. 4d), while g L( − 1)P, ↓�

 is strictly zero. Owing to the nor-
malization g L( − 1)S P,z ↓

∼  goes to 1 for J J⊥ ≫ ∥.
In our work, we realized a finite-temperature version of the topo-

logical Haldane SPT phase using the full spin and density resolution 
of our Fermi quantum gas microscope. We demonstrated the robust-
ness of the edge states and the hidden order of this SPT phase in both 
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Fig. 4 | Robustness of the Haldane phase to density fluctuations. a, b, The 
hidden SPT order is preserved even at low Hubbard interactions, as revealed by 
the novel string correlators g d| ( ) |S z P, ↓͠  (green circles) and g d| ( )|P, ↓

�
 (grey 

squares) on the basis of the spin-down parity P̂
↓

. g| |S z P, ↓͠  stays non-zero, 
whereas 

�
g| |P, ↓  is consistent with zero for d = L − 1 over the measured interaction 

range. The same qualitative behaviour is seen in zero-temperature DMRG 
calculations (shaded line) with L → ∞. c, Spatial distribution of excess 
magnetization (m z  = ±1) for decreasing U t/ ∥. Even far away from the Heisenberg 
regime, the edge state signal remains strong and only diminishes for very weak 
U t/ ∥. d, Map of zero-temperature DMRG L( → ∞) results for the spin-string 
correlator in the entire parameter space of the topological phase. It shows a 
strictly non-zero ĝ S z P, ↓ while 

�
g L( − 1) = 0P, ↓  everywhere in this phase. The black 

circles indicate the parameters of the measurements. All experimental data 
were taken at J J/ = 1.3(2)⊥ ∥  and L = 5 in the tilted geometry. m z  = 0 in a, b and d. 
Error bars denote one standard error of the mean (s.e.m.) and are smaller than 
their marker size if not visible.
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the Heisenberg and the Fermi–Hubbard regime. In the future, studies 
may extend the two-leg ladder to a varying number of legs, in which 
one would expect clear differences between even and odd numbers 
of legs39 and topological effects away from half-filling40, or may inves-
tigate topological phases in higher dimensions41. Furthermore, the 
ladder geometry holds the potential to reveal hole–hole pairing42 at 
temperatures more favourable than in a full two-dimensional system.

Online content
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Methods

Experimental sequence
In each experimental run, we prepare a cold atomic cloud of 6Li in a 
balanced mixture of the lowest two hyperfine states (F = 1/2, mF = ±1/2). 
For evaporation, we confine the cloud in a single layer of a staggered 
optical superlattice along the z direction, with spacings as = 3 μm and 
a1 = 6 μm and depths V E= 45s R

s  and V E= 110l R
l , where ER denotes the 

recoil energy of the respective lattice. The atoms are harmonically 
confined in the xy plane and the evaporation is performed by ramping 
up a magnetic gradient along the y direction20. The final atom number 
is tuned via the evaporation parameters.

The cloud is then loaded into an optical lattice in the xy plane with 
spacings ax = 1.18 μm and ay = 1.15 μm, which is ramped up within 100 ms 
to its final value, ranging from 5ER to 15ER depending on the chosen 
Hubbard parameters. The scattering length is tuned from 230 aB dur-
ing evaporation, with aB being the Bohr radius, to its final value ranging 
between 241 aB and 1,200 aB using the broad Feshbach resonance of 
6Li. An overview of the parameters of each dataset is given in Extended 
Data Table 1. Simultaneously with the lattice loading, a repulsive poten-
tial is ramped up, which compensates for the harmonic confinement 
generated by the curvature of the Gaussian lattice beams and divides 
the resulting flat area into four disconnected ladder systems along the 
y direction (see ‘Potential shaping’). We achieve temperatures of 

∥k T J≈ 0.9(3)B  for the parameters in Fig. 2.
For detection, the configuration is frozen by ramping the xy lattices 

to E43 xy
R  within 250 μs. A Stern–Gerlach sequence separates the two 

spin species into two neighbouring planes of the vertical superlattice, 
which are then separated to a distance of 21 μm using the charge pump-
ing technique described in ref. 20. Finally, simultaneous fluorescence 
images of the two planes are taken using Raman sideband cooling in 
our dedicated pinning lattice43, with an imaging time of 2.5 s. The fluo-
rescence of both planes is collected through the same high-resolution 
objective. The light is then split into two paths using a polarizing beam 
splitter. One of the beams passes through a variable 1:1 telescope before 
both paths are recombined on a second polarizing beam splitter with 
a small spatial offset. This enables us to image both planes in a single 
exposure, with each plane in focus on a separate fixed position of our 
camera. We calibrated the relative position on the camera of the two 
imaged planes using 300 shots of a spin-split Mott insulator and the 
matching algorithm described in the supplement of ref. 20. The overall 
detection fidelity per atom was 96(1)%.

Potential shaping
The ladder systems are created by superimposing the optical lattice 
with a repulsive potential, which is shaped by projecting incoherent 
light at 650 nm (generated from a SLED by Exalos EXS210030-03) 
from a digital micromirror device (DMD) through the high-resolution 
objective. Four ladders are created by blocking lattice sites with a 
potential V = 3.5(5)U around each ladder. The area outside the walled 
ladders is lifted above the inner ladder potential, but remains below 
the interaction energy U. It thus serves as a reservoir for surplus 
atoms, which occupy this region once the lowest Hubbard band of 
the ladders is filled. The flatness of the potential is adjusted for each 
parameter setting, as the intensity of the lattice beams directly influ-
ence the curvature of the potential. This is accomplished by realizing 
a system with about 20% doping and returning the average density 
of 100–150 experimental runs as feedback to the DMD pattern. We 
repeat the feedback until we reach a sufficiently flat density profile 
with a variance <1 × 10−3 over the 8L ladder sites. To adjust for drifts 
in the lattice phase, we continuously track the lattice phase of each 
experimental run and feedback to the potential position accord-
ingly. In Extended Data Fig. 1, the average density and occupation 
histograms of all four ladders and the reservoir area are shown for 
the dataset of L = 7.

Data selection
In each experimental run, four ladder systems are realized. To fulfil the 
criteria of the Heisenberg regime, we then select on ladder instances 
with atom number N = 2L and restrict the total magnetization to  
M z  = 0, M = 1z , or M ≤ 1z , depending on the observable, and specify 
the magnetization sector whenever data points are presented.  
M ≤ 1z  for 87.5% of all data. Additionally, for all measurements in the 
Heisenberg regime, we remove ladders with more than two doublons, 
as those indicate a mismatch of the DMD pattern relative to the lattice 
phase. To give a specific example, we here give the precise numbers for 
the data presented in Fig. 2. This dataset consists of 7,032 realizations 
with four ladders each. Out of those 28,128 ladders, 6,721 have an atom 
number of 14. In addition, 2,636 ladders then have a total magnetization 
m z = 0 and 3,094 have a magnetization of M z  = ± 1. Finally 77 of those 
2,636 ladders have more than two doublon–hole pairs, which we exclude 
as these are most likely to be caused by drifts of the potential pattern 
given by the DMD. This leaves a total of 2,559 ladders out of the initial 
28,128 for calculation of the string correlator.

For calculating the string correlators gS R,z z  and 
�

g R, z  at fixed d, we 
exclude realizations with an odd atom number in the bulk area (grey 
area in the cartoon of Fig. 2b), as those would lead to imaginary con-
tributions to the correlators, and we also exclude odd atom numbers 
at the edge areas (green in the cartoon of Fig. 2b). These cases are mostly 
due to the finite ∥U t/ , which still allows for some particle fluctuations. 
We keep other particle–hole fluctuations, such as those occurring 
within the string. These do not alter the observed string correlation 
relative to the Heisenberg model.

Nearest-neighbour spin correlations
The two-leg ladder systems show strong antiferromagnetic spin correlations 
in which the dominant orientation depends on the ratio of couplings J J/⊥ ∥ 
and the strength is measured by C d S S( ) = 4⟨ ˆ ˆ ⟩x i j

z
i j d
z

, , +  and C S S= 4⟨ ˆ ˆ ⟩y j
z

j
z

A, B, . 
For a leg coupling J∥ much higher than the rung coupling J⊥, the nearest-
neighbour spin correlator Cy along the rung almost vanishes, whereas cor-
relations reach Cx(1) = −0.500(6) along the leg direction. For a dominating 
rung coupling J⊥, Cy reaches −0.58(1), indicating singlet formation between 
the two sites of a rung. Extended Data Fig. 2a shows the measured spin cor-
relations along both rung and leg for different values of J J/⊥ ∥. The values 
match the finite-temperature Heisenberg model for an entropy of 
S/N = (0.3−0.4) kB per particle obtained from ED.

Theory simulation
In this work, we have used two different numerical methods to obtain 
theoretical predictions for the experimentally measured observables. 
The results in the Heisenberg regime were obtained using ED of our 
spin-1/2 ladders up to sizes of L = 9 (limited by computational resources). 
For each data point, the system size and geometry in the ED simulation 
are the same as in the experimental data. The finite-temperature results 
were obtained by using the full spectrum. We specify the entropy per 
particle s = S/N, which we find to be approximately independent of cou-
pling parameters in the experimental realizations. The results in the 
Hubbard regime are calculated using the DMRG ansatz44 based on the 
TeNPy library (v.0.3.0)45. For all calculations, we conserved the total 
particle number and the total magnetization. For the phase diagram in 
Fig. 4d we used the iDMRG technique to obtain the ground state and the 
values of the string order parameters in the thermodynamic limit. For 
this, we evaluated the ground state for each parameter and used a max-
imal MPS bond dimension χ = 1,200. The bond dimension is increased 
in steps Δχ = 40 and the simulation stopped when the difference in the 
ground state energy per unit cell E(χ + Δχ) − E(χ) < 10−7. This worked for 
most parameters except in the vicinity of two decoupled Hubbard chains 
and at small values of ∥U t/ . Nevertheless, in this regime we find that the 
energy per unit cell is converged up to E(1,200) − E(1,160) < 10−4. For the 
experimentally accessible regime all calculations fulfil the former bound. 
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To obtain the infinite length value of the string order parameters, we 
calculated it for different lengths d∈[200, 400, ..., 1600] to make sure 
that its final value is converged.

Data availability
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Extended Data Fig. 1 | Density engineering. a, Repulsive light shaped with a 
DMD splits the system into four independent ladders in the centre surrounded 
by a low-density bath. The density of the ladders is n = 0.992 with a standard 
deviation of 0.03. b, The occupation histograms show the normalized 
occurrence of total atom numbers in each ladder and the normalized 
occurrence in the surrounding bath for L = 7. Almost 25% of the ladder 
realizations have N = 2L.
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Extended Data Fig. 2 | Nearest-neighbour spin correlations. The 
nearest-neighbour spin correlation C(1) for different J J/⊥ ∥ in the L = 5 system. 
The brown (purple) points refer to the correlations along the rung (leg).  
The shaded areas correspond to the correlations in the Heisenberg model with 
an entropy of S/N = (0.3−0.4) kB per particle. Both theoretical and experimental 
values are obtained from the magnetization sector m z  = 0.



Extended Data Table 1 | Experimental parameters

The parameters system size L, leg coupling �t , rung coupling t⊥, interaction U and the resulting 
ratio �⊥J J/  are shown for all datasets. The uncertainties are given for J J/ �⊥  and originate from a 
5% uncertainty on the hopping parameters ⊥t  and t�. For the length scan we keep all other 
parameters constant, whereas the �⊥J J/  scan demands a tuning of both tunnelling amplitudes 
to keep both �U t/  and ⊥U t/  high. Where the topologically trivial geometry is realized, it has the 
same parameters as the topological geometry.
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