27 research outputs found

    Ubiquitination dynamics in the early-branching eukaryote Giardia intestinalis

    Get PDF
    Ubiquitination is a highly dynamic and versatile posttranslational modification that regulates protein function, stability, and interactions. To investigate the roles of ubiquitination in a primitive eukaryotic lineage, we utilized the early-branching eukaryote Giardia intestinalis. Using a combination of biochemical, immunofluorescence-based, and proteomics approaches, we assessed the ubiquitination status during the process of differentiation in Giardia. We observed that different types of ubiquitin modifications present specific cellular and temporal distribution throughout the Giardia life cycle from trophozoites to cyst maturation. Ubiquitin signal was detected in the wall of mature cysts, and enzymes implicated in cyst wall biogenesis were identified as substrates for ubiquitination. Interestingly, inhibition of proteasome activity did not affect trophozoite replication and differentiation, while it caused a decrease in cyst viability, arguing for proteasome involvement in cyst wall maturation. Using a proteomics approach, we identified around 200 high-confidence ubiquitinated candidates that vary their ubiquitination status during differentiation. Our results indicate that ubiquitination is critical for several cellular processes in this primitive eukaryote

    A novel ubiquitin mark at the N-terminal tail of histone H2As targeted by RNF168 ubiquitin ligase

    Get PDF
    Ubiquitination of histones plays a critical role in the regulation of several processes within the nucleus, including maintenance of genome stability and transcriptional regulation. The only known ubiquitination site on histones is represented by a conserved Lys residue located at the C terminus of the protein. Here, we describe a novel ubiquitin mark at the N-terminal tail of histone H2As consisting of two Lys residues at positions 13 and 15 (K13/K15). This "bidentate" site is a target of the DNA damage response (DDR) ubiquitin ligases RNF8 and RNF168. Histone mutants lacking the K13/K15 site impair RNF168- and DNA damage-dependent ubiquitination. Conversely, inactivation of the canonical C-terminal site prevents the constitutive monoubiquitination of histone H2As but does not abolish the ubiquitination induced by RNF168. A ubiquitination-defective mutant is obtained by inactivating both the N- and the C-terminal sites, suggesting that these are unique, non-redundant acceptors of ubiquitination on histone H2As. This unprecedented result implies that RNF168 generates a qualitatively different Ub mark on chromatin

    A Mad2-Mediated Translational Regulatory Mechanism Promoting S-Phase Cyclin Synthesis Controls Origin Firing and Survival to Replication Stress

    Get PDF
    Cell survival to replication stress depends on the\ua0activation of the Mec1ATR-Rad53 checkpoint response that protects the integrity of stalled forks and controls the origin firing program. Here we found that Mad2, a member of the spindle assembly checkpoint (SAC), contributes to efficient origin firing and to cell survival in response to replication stress. We show that Rad53 and Mad2 promote S-phase cyclin expression through different mechanisms: while Rad53 influences Clb5,6 degradation, Mad2 promotes their protein synthesis. We found that Mad2 co-sediments with polysomes and modulates the association of the translation inhibitor Caf204E-BP with the translation machinery and the initiation factor eIF4E. This Mad2-dependent translational regulatory process does not depend on other SAC proteins. Altogether our observations indicate that Mad2 has an additional function outside of mitosis to control DNA synthesis and collaborates with the Mec1-Rad53 regulatory axis to allow cell survival in response to replication stress

    Quantification of ethyl glucuronide, ethyl sulfate, nicotine, and its metabolites in human fetal liver and placenta

    Get PDF
    This research was supported by the Medical Research Council (UK) grant MR/L010011/1 and the Intramural Research Program at the National Institute on Drug Abuse of the National Institutes of Health. Paired fetal liver and placenta samples were graciously provided by the Joint Medical Research Council/Wellcome Trust (grant number 099175/Z/12/Z) Human Developmental Biology Resource (www.hdbr.org). The online version of this article (doi:10.1007/s11419-017-0389-2) contains supplementary material, which is available to authorized users.Peer reviewedPostprin

    Initiation of mRNA translation in bacteria: structural and dynamic aspects

    Get PDF

    Biogenesis of tail-anchored proteins

    No full text

    Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression

    No full text
    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus\ua0laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase\ua0I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions

    Nanostructured calcium cobalt oxide Ca3Co4O9 as thermoelectric material. Effect of nanostructure on local coordination, Co charge state and thermoelectric properties

    No full text
    The preparation of pure Ca3Co4O9 materials in the form of dense bodies made of nano-sized grains was investigated by combining a sol-gel route, different thermal cycles, a ball-milling post-treatment and final densification with HP-FAST (High Pressure-Field Assisted Sintering). We found that an effective way for obtaining nano-sized compact bodies with only a marginal increase of the particle sizes of the original powder was the operation of HP-FAST at extremely high pressures (up to 430 MPa) and comparatively low temperatures. A ball-milling treatment before HP-FAST compaction was then required to hinder the large plastic deformation occurring when using these pressures. In contrast, un-milled powders could be densified by HP-FAST only at lower pressure and therefore required higher temperatures, thus losing their nanostructure. For all powders, X-ray absorption spectroscopy assessed a mean Co oxidation state slightly higher than III, coupled to absence of localized Co(II) and presence of localized Co(IV). Ball milling induced a decrease of the mean oxidation state of Co coupled to an increased disorder. The latter effect was confirmed by X-ray Absorption Fine Structure. Nanostructure had a complex effect on the different properties of compact bodies. According to the different conditions of HP-FAST, densities of 75–98% were achieved; the decrease in thermal conductivity was of a factor 2–3, while the electronic transport properties – in particular electrical conductivity – of nano-sized compact bodies were reduced to a larger extent with respect to their micro-sized counterparts. This demonstrates that, for bulk Ca3Co4O9 materials, nanostructure was not an effective approach toward a performing thermoelectric material
    corecore