1,536 research outputs found
Comparative genetic resistance to Ascaridia galli infections of 4 different commercial layer-lines
1. The objective of the study was to compare the establishment and effect of Ascaridia galli infections in 4 different layer-lines.
2. A total of 160 birds comprising 4 different commercial layer-lines, ISA Brown, New Hampshire, Skalborg and a cross of New Hampshire(NH) and Skalborg (Sk), were infected with A. galli eggs. The birds were examined for the presence of parasite eggs and parasites at weeks 3, 6 and 9 post infection (pi).
3. At week 6 pi the chickens of the NH line harboured more larvae compared with the three other lines. The Sk line chickens excreted more A. galli eggs throughout the study compared with the other lines. Female worms in the Sk line were more fecund than the worms in the other lines. Male and female worms recovered from the Sk line at week 9 pi were longer. Male worms recovered from the NH line 6 weeks pi were shorter than male worms from the other lines. Female worms recovered from the NH line were shorter than the female worms from the ISA line and the Sk line. No differences were seen
in weight gain among the 4 lines.
4. The results suggest that genetic factors are involved in the establishment and survival of A. galli in the intestine of layers. Further studies are needed to elucidate the genetic mechanisms behind the observed parasitological findings
A method for the estimation of p-mode parameters from averaged solar oscillation power spectra
A new fitting methodology is presented which is equally well suited for the
estimation of low-, medium-, and high-degree mode parameters from -averaged
solar oscillation power spectra of widely differing spectral resolution. This
method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or
WMLTP Method, constructs a theoretical profile by convolving the weighted sum
of the profiles of the modes appearing in the fitting box with the power
spectrum of the window function of the observing run using weights from a
leakage matrix that takes into account both observational and physical effects,
such as the distortion of modes by solar latitudinal differential rotation. We
demonstrate that the WMLTP Method makes substantial improvements in the
inferences of the properties of the solar oscillations in comparison with a
previous method that employed a single profile to represent each spectral peak.
We also present an inversion for the internal solar structure which is based
upon 6,366 modes that we have computed using the WMLTP method on the 66-day
long 2010 SOHO/MDI Dynamics Run. To improve both the numerical stability and
reliability of the inversion we developed a new procedure for the
identification and correction of outliers in a frequency data set. We present
evidence for a pronounced departure of the sound speed in the outer half of the
solar convection zone and in the subsurface shear layer from the radial sound
speed profile contained in Model~S of Christensen-Dalsgaard and his
collaborators that existed in the rising phase of Solar Cycle~24 during
mid-2010
Gyroscopic pumping of large-scale flows in stellar interiors, and application to Lithium Dip stars
The maintenance of large-scale differential rotation in stellar convective
regions by rotationally influenced convective stresses also drives large-scale
meridional flows by angular--momentum conservation. This process is an example
of ``gyroscopic pumping'', and has recently been studied in detail in the solar
context. An important question concerns the extent to which these
gyroscopically pumped meridional flows penetrate into nearby stably stratified
(radiative) regions, since they could potentially be an important source of
non-local mixing. Here we present an extensive study of the gyroscopic pumping
mechanism, using a combination of analytical calculations and numerical
simulations both in Cartesian geometry and in spherical geometry. The various
methods, when compared with one another, provide physical insight into the
process itself, as well as increasingly sophisticated means of estimating the
gyroscopic pumping rate. As an example of application, we investigate the
effects of this large-scale mixing process on the surface abundances of the
light elements Li and Be for stars in the mass range 1.3-1.5 solar masses
(so-called ``Li-dip stars''). We find that gyroscopic pumping is a very
efficient mechanism for circulating material between the surface and the deep
interior, so much in fact that it over-estimates Li and Be depletion by orders
of magnitude for stars on the hot side of the dip.However, when the diffusion
of chemical species back into the surface convection zone is taken into
account, a good fit with observed surface abundances of Li and Be as a function
of stellar mass in the Hyades cluster can be found for reasonable choices of
model parameters.Comment: Submitted to Ap
Does the Sun Shrink with Increasing Magnetic Activity?
We have analyzed the full set of SOHO/MDI f- and p-mode oscillation
frequencies from 1996 to date in a search for evidence of solar radius
evolution during the rising phase of the current activity cycle. Like Antia et
al. (2000), we find that a significant fraction of the f-mode frequency changes
scale with frequency; and that if these are interpreted in terms of a radius
change, it implies a shrinking sun. Our inferred rate of shrinkage is about 1.5
km/y, which is somewhat smaller than found by Antia et al. We argue that this
rate does not refer to the surface, but rather to a layer extending roughly
from 4 to 8 Mm beneath the visible surface. The rate of shrinking may be
accounted for by an increasing radial component of the rms random magnetic
field at a rate that depends on its radial distribution. If it were uniform,
the required field would be ~7 kG. However, if it were inwardly increasing,
then a 1 kG field at 8 Mm would suffice.
To assess contribution to the solar radius change arising above 4Mm, we
analyzed the p-mode data. The evolution of the p-mode frequencies may be
explained by a magnetic^M field growing with activity. The implications of the
near-surface magnetic field changes depend on the anisotropy of the random
magnetic field. If the field change is predominantly radial, then we infer an
additional shrinking at a rate between 1.1-1.3 km/y at the photosphere. If on
the other hand the increase is isotropic, we find a competing expansion at a
rate of 2.3 km/y. In any case, variations in the sun's radius in the activity
cycle are at the level of 10^{-5} or less, hence have a negligible contribution
to the irradiance variations.Comment: 10 pages (ApJ preprint style), 4 figures; accepted for publication in
Ap
- …