244 research outputs found

    Nonlinear Analysis of an Improved Swing Equation

    Get PDF
    In this paper, we investigate the properties of an improved swing equation model for synchronous generators. This model is derived by omitting the main simplifying assumption of the conventional swing equation, and requires a novel analysis for the stability and frequency regulation. We consider two scenarios. First we study the case that a synchronous generator is connected to a constant load. Second, we inspect the case of the single machine connected to an infinite bus. Simulations verify the results

    Equivalence of switching linear systems by bisimulation

    Get PDF
    A general notion of hybrid bisimulation is proposed for the class of switching linear systems. Connections between the notions of bisimulation-based equivalence, state-space equivalence, algebraic and input–output equivalence are investigated. An algebraic characterization of hybrid bisimulation and an algorithmic procedure converging in a finite number of steps to the maximal hybrid bisimulation are derived. Hybrid state space reduction is performed by hybrid bisimulation between the hybrid system and itself. By specializing the results obtained on bisimulation, also characterizations of simulation and abstraction are derived. Connections between observability, bisimulation-based reduction and simulation-based abstraction are studied.\ud \u

    Tracking Control of Nonlinear Systems with Disturbance Attenuation

    Get PDF

    Tracking Control of Nonlinear Systems with Disturbance Attenuation

    Get PDF

    Nonholonomic systems with symmetry allowing a conformally symplectic reduction

    Full text link
    Non-holonomic mechanical systems can be described by a degenerate almost-Poisson structure (dropping the Jacobi identity) in the constrained space. If enough symmetries transversal to the constraints are present, the system reduces to a nondegenerate almost-Poisson structure on a ``compressed'' space. Here we show, in the simplest non-holonomic systems, that in favorable circumnstances the compressed system is conformally symplectic, although the ``non-compressed'' constrained system never admits a Jacobi structure (in the sense of Marle et al.).Comment: 8 pages. A slight edition of the version to appear in Proceedings of HAMSYS 200

    Bond graphs in model matching control

    Get PDF
    Bond graphs are primarily used in the network modeling of lumped parameter physical systems, but controller design with this graphical technique is relatively unexplored. It is shown that bond graphs can be used as a tool for certain model matching control designs. Some basic facts on the nonlinear model matching problem are recalled. The model matching problem is then associated with a particular disturbance decoupling problem, and it is demonstrated that bicausal assignment methods for bond graphs can be applied to solve the disturbance decoupling problem as to meet the model matching objective. The adopted bond graph approach is presented through a detailed example, which shows that the obtained controller induces port-Hamiltonian error dynamics. As a result, the closed loop system has an associated standard bond graph representation, thereby rendering energy shaping and damping injection possible from within a graphical context

    Making big steps in trajectories

    Full text link
    We consider the solution of initial value problems within the context of hybrid systems and emphasise the use of high precision approximations (in software for exact real arithmetic). We propose a novel algorithm for the computation of trajectories up to the area where discontinuous jumps appear, applicable for holomorphic flow functions. Examples with a prototypical implementation illustrate that the algorithm might provide results with higher precision than well-known ODE solvers at a similar computation time

    On local linearization of control systems

    Get PDF
    We consider the problem of topological linearization of smooth (C infinity or real analytic) control systems, i.e. of their local equivalence to a linear controllable system via point-wise transformations on the state and the control (static feedback transformations) that are topological but not necessarily differentiable. We prove that local topological linearization implies local smooth linearization, at generic points. At arbitrary points, it implies local conjugation to a linear system via a homeomorphism that induces a smooth diffeomorphism on the state variables, and, except at "strongly" singular points, this homeomorphism can be chosen to be a smooth mapping (the inverse map needs not be smooth). Deciding whether the same is true at "strongly" singular points is tantamount to solve an intriguing open question in differential topology

    Variational and Geometric Structures of Discrete Dirac Mechanics

    Full text link
    In this paper, we develop the theoretical foundations of discrete Dirac mechanics, that is, discrete mechanics of degenerate Lagrangian/Hamiltonian systems with constraints. We first construct discrete analogues of Tulczyjew's triple and induced Dirac structures by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete Lagrange-Dirac and nonholonomic Hamiltonian systems. In particular, this yields nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. The paper provides a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of discrete Dirac mechanics, as well as a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.Comment: 26 pages; published online in Foundations of Computational Mathematics (2011
    • 

    corecore