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Abstract 
Sufficient geometric conditions are given which lead 
to the explicit construction of a state feedback track- 
ing control for single-input single-output nonlinear 
systems with bounded unmodelled disturbances enter- 
ing nonlinearly. For any initial condition the output 
asymptotically tracks a bounded reference signal with 
bounded time derivatives with an arbitrary attenua- 
tion of the influence of the disturbance. The sufficient 
conditions are weaker than those presented in [6] and 
the technique of proof is also different. 

1 Introduction 
This paper provides sufficient conditions for the ex- 
plicit construction of a state feedback control capa- 
ble of forcing the output y to  track a bounded ref- 
erence signal Yd(t  with an arbitrary attenuation of a 
bounded unmode 1' led time varying disturbance O(t)  for 
nonlinear systems 

3 : =  

y = h ( z ) ,  y E  R.  

f ( 2 )  + g(z)u + !?(XI qq), 2 E R", 21 E R, 

(1) 
In (1) f : R" -+ R", g : R" -+ R", q : R" x cj -+ R", 
h : R" + R are smooth functions, g(z) # 0, Vx E R", 
x is the state, U is the input, 8 : R+ -+ Cl E RP is the 
disturbance, y is the output which is required to track 
a reference signal Yd(t) .  This problem is also called al- 
most disturbance decoupling, following the terminol- 
ogy introduced in [ll] for linear systems: it is posed 
when the well understood disturbance decoupling (or 
rejection) problem, that is the design of a state feed- 
back control which makes the output insensitive to 
unmodelled disturbances, is not solvable. 

Necessary and sufficient geometric conditions for 
the solvability of the disturbance decoupling problem 
are obtained in 41 and 5 ,  generalizing the results 
established in [12\ and [lf lor linear systems. Equiv- 
alent conditions based on the notion of characteris- 
tic indexes are given in [2] for linear systems and in 
[S] for nonlinear ones. When the disturbance decou- 
pling problem is not solvable, it is natural to look 
for conditions which guarantee the attenuation of the 

influence of the disturbance on the output with any 
desired degree of accuracy. This problem, called al- 
most disturbance decoupling, was posed and solved in 
111 for linear systems in terms of necessary and suf- k cient geometric conditions. In particular, the prob- 

lem turns out to be always solvable for single-input, 
single-utput linear systems of type 

x = F x + g u + Q O  
y = h3: (2) 

where F and Q are n x n and n x p constant matrices, 
g and hT are n x 1 constant vectors. As pointed out 
in [ll] the almost disturbance decoupling problem is 
related to high-gain feedback design since, when it is 
not (exactly) solvable, the higher the gains are the 
higher the disturbance attenuation results. In fact in 
[7] a parameterized state feedback control is explicitly 
obtained when the almost disturbance decoupling is 
solvable; for square and minimum-phase systems a 
parameterized output-feedback control is given in [lo]. 

At the moment it is not known whether, as in the 
linear case, the almost disturbance decoupling prob- 
lem is always solvable for single-input, single-output 
nonlinear systems (1). Sufficient conditions are ob- 
tained in [6] using differential geometric tools and sin- 
ular perturbation techniques. The example (given in 

i1 = z2 + O l ( t )  
i2 = .;e,(t) + U ( t )  (3)  

k1) 
Y = 21 

fails to satisfy the sufficient conditions in [6] and shows 
that the almost disturbance decoupling problem can- 
not be solved on the basis of linear approximations. 
The non-local nature of the problem is also pointed 
out by the example (also given in [SI) 

$1 = arctan22 + O ( t )  
2 2  = u ( t )  (4) 
Y = 2 1  

where disturbances lO(t)l > r/2 cannot be attenuated. 
In this paper we provide sufficient conditions for 

disturbance attenuation which generalize those given 
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in [6]: for instance, the example (3) satisfies the con- 
ditions given here. The control algorithm we develop 
generalizes the one given in [6] and coincides with it 
in special simpler cases even though the techniques of 
proof are entirely different. We do not use singular 
perturbation techniques; we determine special coordi- 
nates in which the control algorithm and a Lyapunov 
function are recursively built. 

2 Main Result 

Definition 2.1 The control characteristic index of 
system (1) is defined as the integer p such that 

L,L)h(x)  = 0 ,  0 5 i I p -  2,Vx E R", 
L,L;-'h(x) # 0 ,  V x E  R". 

If L,L)h(x) = 0,  Vi,Vx E Rn, then p = CO. 

0 

Definition 2.2 The disturbance characteristic index 
v of system (1) is defined as the integer such that 

L ,L )h ( t )  = 0 ,  0 5 i L V -  2,Vx E R", 
L,L;-'h(x) # 0,  for some 8 E R ,  some x E R". 

0 
As shown in [5] and [8] the exact disturbance decou- 

pling problem is locally solvable if and only if v > p .  
Assumption 1 We assume in the following that p is 
well defined and that v I p < 00, that is that the 
exact disturbance decoupling problem is not solvable. 

Definition 2.3 The tracking problem with distur- 
bance attenuation is said to be solvable for system (1 , 
if for any smooth bounded reference trajectory y,j(tj, 
with bounded time derivatives y y ) ,  . . . , &), for any 
bounded disturbance 9( t )  E R c R P ,  and for any ini- 
tial condition z(0) a parameterized stale feedback con- 

and for every c > 0 and T > 0 there exists k ( c , T )  
such that 

x ,  E ,  t )  ezists such that Il+(t)! and the 
t )  = y ( t )  - y , j ( t )  are bounde Vt 2 0 ,  

Ile(t)ll I 6, V t  2. T(c) ,Vk > k ( e , T ) .  
0 

Under Assumption 1 we can locally define a change 
of coordinates 

zn = 4n(x)  

with $i(z), p +  1 5 i 5 n, such that 

< d d j , g  >= 0. 

In new coordinates we have 

i l  = 22 + L,h(x)  

i,-l = zp + L,L?-'h(x) 

i p + j  = LjSp+j(z) + Lq4p+j(z,e(t)) 
i, = L$h(x)  + L,L;-'h(x) + L,L;-'h(x)u 

A = Pj(z ,e ( t ) ) ,  1 L j I - P 

(6) 
Y = 21 

in which L,L;-'h(x) # 0, Vx  E R", according to 
Assumption 1 and Definition 2.1. Denoting .zr = 
( zp+l , .  . . , zn)  and p = (PI , .  . . , Pn-,) the dynamics 

i r  =P(zr , z l ( t ) , .  . . , t p ( t ) , B  l ( t ) , . . . , e p ( t ) )  (7) 

is called the tracking dynamics where 
z l ( t ) ,  . . . , z,(t),Bl(t), . . . , O p ( t )  are the inputs. When 
21 = . - . =  zp = 0 and 0 = 0 the tracking dynamics is 
the zero dynamics. 
Assumption 2 The tracking dynamics (7) is bounded 
input bounded state. 

Theorem 2.1 Assume in addition to Assumptions 1 
and 2 that the following conditions are satisfied for 
system (1): 

(i) there exist p - v + 1 smooth functions a i (x ) ,  
v - 1,s z 5 p - 1, satisfying dai E 
span{dh,dLjh,. . . ,dL)h) ,  such that Vx  E R", 
ve E R, 

J L , L ) h l I  ai, v -  15 i I p -  1; 

(ii) the vector fields 

- 1 1 
L;h,  j = -  9 f=f-- 

L,  L;-'h L,  L5-l h 

are complete. 

Then, the problem of tracking with disturbance atten- 
uation is solvable. 

Proof We consider the general case in which v = 1. 
By virtue of Assumption 1 and the additional con- 
dition (ii) the chan e of coordinates (5) is globally 
defined (see [SI and73 and system (1) can be glob- 
ally transformed into (16,. We introduce a new control 
variable w,  defined as 

v = L,L?-'h(x)u + L;h(x)  - y y )  (8) 

which substituted in (6) gives 

el = e2 +L,h(x)  
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where ei = zi - yy-'), 1 5 i 5 p. Note that if v > p 
the control (8) solves the exact disturbance decoupling 
problem. Define 

e; = -Le1 - e l p l ( t )  (10) 

where p1 is a smooth function yet to be defined and 
k > 0. Consider the function 

1 
2 (11) VI = -e: 

The time derivative of VI, with e2 = e; in (9), is given 

ii = -kef - e:p1 + e lL,h(z)  (12) 

(13) 

by 

and, according to the inequality in (i), we have 

VI I -ke? - e:pi + lellao(z1) 

Since a0 is a smooth function and Yd is bounded, we 
can write 

ao(z1) = a d e l  + Yd) = Q ' o ( Y ~ )  + &(e l ,  yd)el (14) 

in which 

(15) 
Q'O(z1) - Q'O(Yd) 

e l  
GO(e1, Yd) = 

Hence, we choose p1 as a smooth function satisfying 

PI 2 Go(e1, yd). (16) 

(17) 

v = e;. (18) 

From (13), we obtain 

Vl 5 -ke; + IelIIw(yd)I 

Therefore, if p = 1 the thesis is proved with 

In fact, we can write 

Recalling that Yd is bounded, Icro(yd)l < y ,  y > 0; for 
every le11 2 €12, we obtain 

vi - < -2k + 2y/t, 
Vl - 

which implies 

VI ( t ) 5 v1 (0 )e(- + '7' ' I t .  

For any E > 0, T > 0 there exists IC which solves the 
problem. 
If p > 1, we prove the following Claim. 
Claim. Assume that for a given index i, 1 5 i 5 p ,  
for the system 

there exist i functions 

the function 

has time derivative, with ei+l = 
ing the inequality 

in (19), satisfy- 

with r]i a suitable smooth function such that 

( l - l ) ,  k) 
= 0. (24) 

r]i(Yd,. .  . l  Yd 
k 

lim 
k - o o  

Then, for the system 

4 = e z + L , h ( z )  

(25) 
ei+l = ei+2 + LqL>h(z) 

there exists a function 

such that in new coordinates (M,+l > 0) 

the function . i+ l  

has time derivative, with ei+2 = 
ing the inequality 

in (25), satisfy- 
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where qi+l is a suitable smooth function such that 

Proof of the Claim. 
following notations: 

For convenience we adopt the 

%(i) = [ % I , .  . . , Z i I T ,  26) = [yd,. . . , y$-l)]T 

e ( i )  = [ e l , .  . . , eiIT, ~ ( i )  = [ ~ l , .  . . , e'iIT 

From (21), (22) and (25) we obtain 

k+1 = -kllE(i)l12 + [lg(i)llqi(z$), k )  + Mi+lEiEi+l 

(31) 
+gi+ 1 &+ 1 

Since by (21) and (25), 

we define 

(33) 
so that (32) with ei+2 = becomes 

= -kEi+l + pi+l&+l - &Mi+l +- 1 (LqL;h  - Cj,, 2 L q L $ - ' h )  
Mi+l 

Substituting (34) into (31), we have (with ei+2 = 

By assumption (ii), we have 

Therefore, we can write 

(37) 

i+l i I i  I 
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which exists since 3/d and its derivatives are bounded, 
so that 

(45) 

From (43), we obtain 

Therefore, choosing 

the thesis is proved with 

U 
Since we have shown that the hypotheses of the 

claim are true for i = 1, applying ( p  - 1)-times the 
claim we can construct a function 

We also construct a change of coordinates 

such that the function 
. P  

has time derivative satisfying the inequality (with k 
suitably redefined) 

with 

= 0. (53) 
qp(Yd, . . . > &-')I  k) 

k 
Therefore, &,, 1 5 i I p,  are bounded and conse- 
quently, since the reference signal yd(t) is bounded 
with its p - 1 time derivatives, r i ( t ) ,  1 _< i 5 p,  are 
bounded. Since Assumption 2 holds llzr(t)ll is also 
bounded. By virtue of (53), we have 

lim 
k-m 

IrlPl 5 Y > 0, 
so that for every le11 2 c/2 

which implies 

e ? ( t )  5 ~ , ( t )  5 V p ( 0 ) e ( - 2 k + 2 ~ l c ) * .  

For any c > 0, T > 0 there exists k which solves the 
problem. Therefore, the problem is solved by the feed- 
back controller given by (8) and (49) with a suitable 
choice of k .  U 

Remark. Theorem 2.1 generalizes the main result 
in [6] in several ways. The disturbances are only al- 
lowed to enter linearly in [6] and are required to have 
bounded time derivatives while in this paper they may 
enter nonlinearly and no requirement is made on their 
time derivatives. While condition (ii) is common to 
both theorems the most important difference lies in 
condition (i) which considerably weakens the corre- 
sponding condition in two ways. The result in [6] re- 
quires for v - 1 < i < p - 1,  

d ( ~ , ~ ) h )  E span{dh,. . . , d ( ~ ; - ' h ) } ,  

while condition (i) in Theorem 2.1 only requires 

d ( ~ , ~ ) h )  E span { d h , .  . . , d ( ~ ) h ) ) ,  v - 1 5  i 5 p-1, 
(55) 

or even the weaker condition on some bounding func- 
tions 

(54) 

IL,L)hl 5 ai, 1/ - 1 , s  i 5 p - 1, 

with 
dai E span {dh ,  . . . , d ( ~ ) h ) }  

For instance condition (55) applies to system (3) while 
the stronger condition (54) does not. 

3 Example 
Consider the system 

i1 = xz + e l ( t )  

iz = +,(t) (56) 

Y =  2 1  

with l B l ( t ) l  < 1 and 10z(t)l  5 1, where B ( t )  = 
[61(t), 6 2 ( t ) l T  is a disturbance signal. It is easily seen 
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that system (31) satisfies the conditions of Theorem 
2.1 with 

Suppose that yd( t )  is the desired output reference to 
be tracked. Define 

el = 2 1  - yd, e2 = x2 - yd. (58) 
From (31) and (32), we have 

el  = e2 + 
i2 = .;e,(t) + - jid = z;e2(t)  + w .  

A 

Define as in (10) 
e; = -kel - e l p l ( t )  

Since by (16) 

p1 L &del ,Yd)  = 0 
we choose p1 = 0 so that 

e; = - k e l .  

Define as in (21) and (33) 

w = -Mz(ke'z + &pZ(t) + M z e l )  - be2 
According to (44), we have 

Mz = k 
and according to (42) 

I'o = # + k  

rl = -2k = 2le;+3ezid+ 3621 
k lx3e2'I 

which imply 
2 
k 112 = - ( e ;  + 3e2Yd + 3Y;)'. 

The final control U is given by 

U = yd - 2k2(e'2 + e l )  - 2~2(e;  + 3e2yd + 3 ~ : ) ~ .  (59) 
If we considered as in [6 the problem of stabilizing the 

using the same design technique, the following control 
law 

linear approximation o 2 system (56) we would obtain, 

U = - k ( k i z  + k ~ 1 )  - kr2 = - 2 k ( ~ 2  + k ~ l )  

which is very similar to the one obtained in [6] 

(60) U =I -- ,i ( € 2 2  + 21) 

1 
k once we define =: -. In [6] it was shown that 

the control algorithm (60) does not guarantee almost 
disturbance decoupling for any bounded disturbance. 
Therefore, the nonlinear part of the control law (59) 
is crucial in order to obtain disturbance attenuation. 
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