388 research outputs found

    Sexual behaviour does not reflect HIV-1 prevalence differences: a comparison study of Zimbabwe and Tanzania

    Get PDF
    Background Substantial heterogeneity in HIV prevalence has been observed within sub-Saharan Africa. It is not clear which factors can explain these differences. Our aim was to identify risk factors that could explain the large differences in HIV-1 prevalence among pregnant women in Harare, Zimbabwe, and Moshi, Tanzania. Methods Cross-sectional data from a two-centre study that enrolled pregnant women in Harare (N = 691) and Moshi (N = 2654) was used. Consenting women were interviewed about their socio-demographic background and sexual behaviour, and tested for presence of sexually transmitted infections and reproductive tract infections. Prevalence distribution of risk factors for HIV acquisition and spread were compared between the two areas. Results The prevalence of HIV-1 among pregnant women was 26% in Zimbabwe and 7% in Tanzania. The HIV prevalence in both countries rises constantly with age up to the 25-30 year age group. After that, it continues to rise among Zimbabwean women, while it drops for Tanzanian women. Risky sexual behaviour was more prominent among Tanzanians than Zimbabweans. Mobility and such infections as HSV-2, trichomoniasis and bacterial vaginosis were more prevalent among Zimbabweans than Tanzanians. Reported male partner circumcision rates between the two countries were widely different, but the effect of male circumcision on HIV prevalence was not apparent within the populations. Conclusions The higher HIV-1 prevalence among pregnant women in Zimbabwe compared with Tanzania cannot be explained by differences in risky sexual behaviour: all risk factors tested for in our study were higher for Tanzania than Zimbabwe. Non-sexual transmission of HIV might have played an important role in variation of HIV prevalence. Male circumcision rates and mobility could contribute to the rate and extent of spread of HIV in the two countries

    Resuscitation of Newborn Piglets. Short-Term Influence of FiO2 on Matrix Metalloproteinases, Caspase-3 and BDNF

    Get PDF
    Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection.Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03.The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome

    Porencephaly and psychosis: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Malformations of the cerebral cortex are often associated with developmental delay and psychoses. Porencephaly is a rare congenital disorder of central nervous system involving a cyst or a cavity filled with cerebrospinal fluid, in brain's parenchyma.</p> <p>Case presentation</p> <p>We present a 25 years old woman with her first psychotic episode. She also suffers from porencephaly in the frontotemporal lobes region. It is emphasized that the two consistently abnormal brain regions in schizophrenia research had significant damage in this patient since birth. There is a total of only five cases of schizencephaly or porencephaly associated with psychosis in the scientific literature. Their clinical characteristics as well as the imaging results are described.</p> <p>Conclusion</p> <p>It is unclear if porencephaly and psychosis concur by chance or are causally related. The area where the porencephalic cysts appear seems to be of relevance. This case highlights the need for further research.</p

    Antioxidant Protects against Increases in Low Molecular Weight Hyaluronan and Inflammation in Asphyxiated Newborn Pigs Resuscitated with 100% Oxygen

    Get PDF
    BACKGROUND: Newborn resuscitation with 100% oxygen is associated with oxidative-nitrative stresses and inflammation. The mechanisms are unclear. Hyaluronan (HA) is fragmented to low molecular weight (LMW) by oxidative-nitrative stresses and can promote inflammation. We examined the effects of 100% oxygen resuscitation and treatment with the antioxidant, N-acetylcysteine (NAC), on lung 3-nitrotyrosine (3-NT), LMW HA, inflammation, TNFα and IL1ß in a newborn pig model of resuscitation. METHODS & PRINCIPAL FINDINGS: Newborn pigs (n = 40) were subjected to severe asphyxia, followed by 30 min ventilation with either 21% or 100% oxygen, and were observed for the subsequent 150 minutes in 21% oxygen. One 100% oxygen group was treated with NAC. Serum, bronchoalveolar lavage (BAL), lung sections, and lung tissue were obtained. Asphyxia resulted in profound hypoxia, hypercarbia and metabolic acidosis. In controls, HA staining was in airway subepithelial matrix and no 3-NT staining was seen. At the end of asphyxia, lavage HA decreased, whereas serum HA increased. At 150 minutes after resuscitation, exposure to 100% oxygen was associated with significantly higher BAL HA, increased 3NT staining, and increased fragmentation of lung HA. Lung neutrophil and macrophage contents, and serum TNFα and IL1ß were higher in animals with LMW than those with HMW HA in the lung. Treatment of 100% oxygen animals with NAC blocked nitrative stress, preserved HMW HA, and decreased inflammation. In vitro, peroxynitrite was able to fragment HA, and macrophages stimulated with LMW HA increased TNFα and IL1ß expression. CONCLUSIONS & SIGNIFICANCE: Compared to 21%, resuscitation with 100% oxygen resulted in increased peroxynitrite, fragmentation of HA, inflammation, as well as TNFα and IL1ß expression. Antioxidant treatment prevented the expression of peroxynitrite, the degradation of HA, and also blocked increases in inflammation and inflammatory cytokines. These findings provide insight into potential mechanisms by which exposure to hyperoxia results in systemic inflammation

    Structural Analysis to Determine the Core of Hypoxia Response Network

    Get PDF
    The advent of sophisticated molecular biology techniques allows to deduce the structure of complex biological networks. However, networks tend to be huge and impose computational challenges on traditional mathematical analysis due to their high dimension and lack of reliable kinetic data. To overcome this problem, complex biological networks are decomposed into modules that are assumed to capture essential aspects of the full network's dynamics. The question that begs for an answer is how to identify the core that is representative of a network's dynamics, its function and robustness. One of the powerful methods to probe into the structure of a network is Petri net analysis. Petri nets support network visualization and execution. They are also equipped with sound mathematical and formal reasoning based on which a network can be decomposed into modules. The structural analysis provides insight into the robustness and facilitates the identification of fragile nodes. The application of these techniques to a previously proposed hypoxia control network reveals three functional modules responsible for degrading the hypoxia-inducible factor (HIF). Interestingly, the structural analysis identifies superfluous network parts and suggests that the reversibility of the reactions are not important for the essential functionality. The core network is determined to be the union of the three reduced individual modules. The structural analysis results are confirmed by numerical integration of the differential equations induced by the individual modules as well as their composition. The structural analysis leads also to a coarse network structure highlighting the structural principles inherent in the three functional modules. Importantly, our analysis identifies the fragile node in this robust network without which the switch-like behavior is shown to be completely absent

    How to prevent ROP in preterm infants in Indonesia?

    Get PDF
    Background and Aims: Retinopathy of prematurity (ROP) is a severe disease in preterm infants. It is seen more frequently in Low-Middle Income Countries (LMIC) like Indonesia compared to High-Income Countries (HIC). Risk factors for ROP development are -extreme- preterm birth, use of oxygen, neonatal infections, respiratory problems, inadequate nutrition, and blood and exchange transfusions. In this paper, we give an overview of steps that can be taken in LMIC to prevent ROP and provide guidelines for screening and treating ROP. Methods: Based on the literature search and data obtained by us in Indonesia's studies, we propose guidelines for the prevention, screening, and treatment of ROP in preterm infants in LMIC. Results: Prevention of ROP starts before birth with preventing preterm labor, transferring a mother who might deliver <32 weeks to a perinatal center and giving corticosteroids to mothers that might deliver <34 weeks. Newborn resuscitation must be done using room air or, in the case of very preterm infants (<29-32 weeks) by using 30% oxygen. Respiratory problems must be prevented by starting continuous positive airway pressure (CPAP) in all preterm infants <32 weeks and in case of respiratory problems in more mature infants. If needed, the surfactant should be given in a minimally invasive manner, as ROP's lower incidence was found using this technique. The use of oxygen must be strictly regulated with a saturation monitor of 91-95%. Infections must be prevented as much as possible. Both oral and parenteral nutrition should be started in all preterm infants on day one of life with preferably mothers' milk. Blood transfusions can be prevented by reducing the amount of blood needed for laboratory analysis. Discussion: Preterm babies should be born in facilities able to care for them optimally. The use of oxygen must be strictly regulated. ROP screening is mandatory in infants born <34 weeks, and infants who received supplemental oxygen for a prolonged period. In case of progression of ROP, immediate mandatory treatment is required. Conclusion: Concerted action is needed to reduce the incidence of ROP in LMIC. "STOP - R1O2P3" is an acronym that can help implement standard practices in all neonatal intensive care units in LMIC to prevent development and progression

    Infusing Sodium Bicarbonate Suppresses Hydrogen Peroxide Accumulation and Superoxide Dismutase Activity in Hypoxic-Reoxygenated Newborn Piglets

    Get PDF
    The effectiveness of sodium bicarbonate (SB) has recently been questioned although it is often used to correct metabolic acidosis of neonates. The aim of the present study was to examine its effect on hemodynamic changes and hydrogen peroxide (H(2)O(2)) generation in the resuscitation of hypoxic newborn animals with severe acidosis.Newborn piglets were block-randomized into a sham-operated control group without hypoxia (n = 6) and two hypoxia-reoxygenation groups (2 h normocapnic alveolar hypoxia followed by 4 h room-air reoxygenation, n = 8/group). At 10 min after reoxygenation, piglets were given either i.v. SB (2 mEq/kg), or saline (hypoxia-reoxygenation controls) in a blinded, randomized fashion. Hemodynamic data and blood gas were collected at specific time points and cerebral cortical H(2)O(2) production was continuously monitored throughout experimental period. Plasma superoxide dismutase and catalase and brain tissue glutathione, superoxide dismutase, catalase, nitrotyrosine and lactate levels were assayed.Two hours of normocapnic alveolar hypoxia caused cardiogenic shock with metabolic acidosis (PH: 6.99 ± 0.07, HCO(3)(-): 8.5 ± 1.6 mmol/L). Upon resuscitation, systemic hemodynamics immediately recovered and then gradually deteriorated with normalization of acid-base imbalance over 4 h of reoxygenation. SB administration significantly enhanced the recovery of both pH and HCO(3-) recovery within the first hour of reoxygenation but did not cause any significant effect in the acid-base at 4 h of reoxygenation and the temporal hemodynamic changes. SB administration significantly suppressed the increase in H(2)O(2) accumulation in the brain with inhibition of superoxide dismutase, but not catalase, activity during hypoxia-reoxygenation as compared to those of saline-treated controls.Despite enhancing the normalization of acid-base imbalance, SB administration during resuscitation did not provide any beneficial effects on hemodynamic recovery in asphyxiated newborn piglets. SB treatment also reduced the H(2)O(2) accumulation in the cerebral cortex without significant effects on oxidative stress markers presumably by suppressing superoxide dismutase but not catalase activity
    corecore