36 research outputs found

    Alteration of rumen bacteria and protozoa through grazing regime as a tool to enhance the bioactive fatty acid content of bovine milk

    Get PDF
    Rumen microorganisms are the origin of many bioactive fatty acids (FA) found in ruminant-derived food products. Differences in plant leaf anatomy and chemical composition between cool- and warm-season pastures may alter rumen microorganisms, potentially enhancing the quantity/profile of bioactive FA available for incorporation into milk. The objective of this study was to identify rumen bacteria and protozoa and their cellular FA when cows grazed a warm-season annual, pearl millet (PM), in comparison to a diverse cool-season pasture (CSP). Individual rumen digesta samples were obtained from five Holstein cows in a repeated measures design with 28-day periods. The treatment sequence was PM, CSP, then PM. Microbial DNA was extracted from rumen digesta and sequence reads were produced with Illumina MiSeq. Fatty acids (FA) were identified in rumen bacteria and protozoa using gas-liquid chromatography/mass spectroscopy. Microbial communities shifted in response to grazing regime. Bacteria of the phylum Bacteroidetes were more abundant during PM than CSP (P \u3c 0.05), while protozoa of the genus Eudiplodinium were more abundant during CSP than PM (P \u3c 0.05). Microbial cellular FA profiles differed between treatments. Bacteria and protozoa from cows grazing CSP contained more n-3 FA (P \u3c 0.001) and vaccenic acid (P \u3c 0.01), but lower proportions of branched-chain FA (P \u3c 0.05). Microbial FA correlated with microbial taxa and levels of vaccenic acid, rumenic acid, and a-linolenic acid in milk. In conclusion, grazing regime can potentially be used to alter microbial communities shifting the FA profile of microbial cells, and subsequently, alter the milk FA profile

    Immunity against Helicobacter pylori: Significance of Interleukin-4 Receptor α Chain Status and Gender of Infected Mice

    No full text
    Vaccination of interleukin-4 (IL-4) receptor α (IL-4Rα) chain-deficient BALB/c mice with Helicobacter pylori urease and cholera toxin or with urease-expressing, live attenuated Salmonella enterica serovar Typhimurium cells revealed that protection against H. pylori infection is independent of IL-4- or IL-13-mediated signals. A comparison of male and female mice suggests a sexual dimorphism in the extent of bacterial colonization that is particularly evident in the absence of the IL-4Rα chain

    Immunization of BALB/c mice with Helicobacter urease B induces a T helper 2 response absent in Helicobacter infection.

    No full text
    BACKGROUND & AIMS: Infection with Helicobacter induces a T helper type 1 response in mice and humans. Mice can be cured or protected from infection with Helicobacter by mucosal immunization with recombinant H. pylori urease B subunit (rUreB). This study characterizes the immune response of infected mice immunized with rUreB. METHODS: BALB/c mice were infected with H. felis. Two weeks later, they were orally immunized four times with rUreB and cholera toxin (CT) at weekly intervals. Controls were only infected or sham-immunized with CT. Animals were killed at various times after immunization. Splenic CD4(+) cells were obtained and cultured in vitro with rUreB to evaluate antigen-specific proliferation and induction of interferon gamma and interleukin 4 secretion. RESULTS: All rUreB-immunized mice (n = 8) were cured from infection 3 weeks after the fourth immunization. Immunization induced a proliferative response of splenic CD4(+) cells, a progressive decrease in interferon gamma secretion, and a concomitant increase in interleukin 4 secretion after each immunization. A simultaneous increase in rUreB specific serum immunoglobulin G1 levels was observed in infected/immunized mice. CONCLUSIONS: In BALB/c mice, therapeutic mucosal immunization with rUreB induces progressively a Th2 CD4(+) T cell response resulting in the elimination of the pathogen

    Image_1_Alteration of Rumen Bacteria and Protozoa Through Grazing Regime as a Tool to Enhance the Bioactive Fatty Acid Content of Bovine Milk.TIF

    No full text
    <p>Rumen microorganisms are the origin of many bioactive fatty acids (FA) found in ruminant-derived food products. Differences in plant leaf anatomy and chemical composition between cool- and warm-season pastures may alter rumen microorganisms, potentially enhancing the quantity/profile of bioactive FA available for incorporation into milk. The objective of this study was to identify rumen bacteria and protozoa and their cellular FA when cows grazed a warm-season annual, pearl millet (PM), in comparison to a diverse cool-season pasture (CSP). Individual rumen digesta samples were obtained from five Holstein cows in a repeated measures design with 28-day periods. The treatment sequence was PM, CSP, then PM. Microbial DNA was extracted from rumen digesta and sequence reads were produced with Illumina MiSeq. Fatty acids (FA) were identified in rumen bacteria and protozoa using gas-liquid chromatography/mass spectroscopy. Microbial communities shifted in response to grazing regime. Bacteria of the phylum Bacteroidetes were more abundant during PM than CSP (P < 0.05), while protozoa of the genus Eudiplodinium were more abundant during CSP than PM (P < 0.05). Microbial cellular FA profiles differed between treatments. Bacteria and protozoa from cows grazing CSP contained more n-3 FA (P < 0.001) and vaccenic acid (P < 0.01), but lower proportions of branched-chain FA (P < 0.05). Microbial FA correlated with microbial taxa and levels of vaccenic acid, rumenic acid, and α-linolenic acid in milk. In conclusion, grazing regime can potentially be used to alter microbial communities shifting the FA profile of microbial cells, and subsequently, alter the milk FA profile.</p

    Image_2_Alteration of Rumen Bacteria and Protozoa Through Grazing Regime as a Tool to Enhance the Bioactive Fatty Acid Content of Bovine Milk.TIF

    No full text
    <p>Rumen microorganisms are the origin of many bioactive fatty acids (FA) found in ruminant-derived food products. Differences in plant leaf anatomy and chemical composition between cool- and warm-season pastures may alter rumen microorganisms, potentially enhancing the quantity/profile of bioactive FA available for incorporation into milk. The objective of this study was to identify rumen bacteria and protozoa and their cellular FA when cows grazed a warm-season annual, pearl millet (PM), in comparison to a diverse cool-season pasture (CSP). Individual rumen digesta samples were obtained from five Holstein cows in a repeated measures design with 28-day periods. The treatment sequence was PM, CSP, then PM. Microbial DNA was extracted from rumen digesta and sequence reads were produced with Illumina MiSeq. Fatty acids (FA) were identified in rumen bacteria and protozoa using gas-liquid chromatography/mass spectroscopy. Microbial communities shifted in response to grazing regime. Bacteria of the phylum Bacteroidetes were more abundant during PM than CSP (P < 0.05), while protozoa of the genus Eudiplodinium were more abundant during CSP than PM (P < 0.05). Microbial cellular FA profiles differed between treatments. Bacteria and protozoa from cows grazing CSP contained more n-3 FA (P < 0.001) and vaccenic acid (P < 0.01), but lower proportions of branched-chain FA (P < 0.05). Microbial FA correlated with microbial taxa and levels of vaccenic acid, rumenic acid, and α-linolenic acid in milk. In conclusion, grazing regime can potentially be used to alter microbial communities shifting the FA profile of microbial cells, and subsequently, alter the milk FA profile.</p
    corecore