27 research outputs found

    ΠŸΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ дСйствий ΠΏΡ€ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ кровоизлияний/Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌ мягких Ρ‚ΠΊΠ°Π½Π΅ΠΉ Ρƒ ΠΏΠΎΠΆΠΈΠ»Ρ‹Ρ… Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… SARS-CoV-2

    Get PDF
    Aim. To determine ultrasound, computed tomography and angiographic image characteristics for soft tissue hemorrhages/hematomas, the sequence of using imaging methods in patients infected with SARS-CoV-2, to study the morphology of changes in soft tissues, to determine the essence of the concept and to develop treatment tactics for this complication of COVID-19.Material and methods. During 4 months of treatment of elderly patients (+60) infected with SARS-CoV-2, 40 patients were identified with soft tissue hemorrhages/hematomas, of which 26 (65%) patients with large hematomas (>10 cm in size and > 1000 ml in volume). The analysis of clinical and laboratory parameters, methods of instrumental diagnostics (ultrasound – 26 patients, CT – 10 patients, angiography – 9 patients, punctures – 6 patients) was carried out; autopsy material was studied in 11 cases.Results. Image characteristics of hemorrhages/hematomas of soft tissue density were obtained using modern instrumental methods, and the sequence of application of visualization methods was determined. A tactic for managing a patient with stopped and ongoing bleeding has been developed. The morphological substrate of hemorrhagic complications in a new viral infection was studied. All patients were treated with conservative and minimally invasive procedures (embolization, puncture with pressure bandage). 15 patients (57.7%) recovered, 11 patients (42.3%) died from the progression of COVID-19 complications.Conclusion. Comprehensive clinical and laboratory sequential instrumental diagnosis of soft tissue hemorrhages in COVID-19. Treatment should be conservative and significantly invasive. The use of the term β€œsoft tissue hematoma” in SARS-CoV-2 infected patients is not a natural quality of the normal pathological process and should not be observed from our point of view.ЦСль исслСдования: ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½Ρ‹Π΅ ΡƒΠ»ΡŒΡ‚Ρ€Π°Π·Π²ΡƒΠΊΠΎΠ²Ρ‹Π΅, ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎ-томографичСскиС ΠΈ ангиографичСскиС ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ мягкотканных кровоизлияний/Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌ, ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ использования ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Ρƒ Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… SARS-CoV-2, ΠΈΠ·ΡƒΡ‡ΠΈΡ‚ΡŒ ΠΌΠΎΡ€Ρ„ΠΎΠ»ΠΎΠ³ΠΈΡŽ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² мягких тканях, ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ ΡΡƒΡ‚ΡŒ понятия ΠΈ Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚Π°Ρ‚ΡŒ Π»Π΅Ρ‡Π΅Π±Π½ΡƒΡŽ Ρ‚Π°ΠΊΡ‚ΠΈΠΊΡƒ ΠΏΡ€ΠΈ Ρ‚Π°ΠΊΠΎΠΌ ослоТнСнии COVID-19.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. Π—Π° 4 мСс лСчСния ΠΏΠΎΠΆΠΈΠ»Ρ‹Ρ… Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… (+60), ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… SARS-CoV-2, выявлСно 40 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с мягкотканными кровоизлияниями/Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌΠ°ΠΌΠΈ, ΠΈΠ· Π½ΠΈΡ… 26 (65%) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² с большими Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌΠ°ΠΌΠΈ (Ρ€Π°Π·ΠΌΠ΅Ρ€ >10 см ΠΈ объСм> 1000 ΠΌΠ»). ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-Π»Π°Π±ΠΎΡ€Π°Ρ‚ΠΎΡ€Π½Ρ‹Ρ… ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ, ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½ΠΎΠΉ диагностики (Π£Π—Π˜ – 26 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², КВ – 10 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ангиография – 9 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ…, ΠΏΡƒΠ½ΠΊΡ†ΠΈΠΈ – 6 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ²), Π² 11 случаях ΠΈΠ·ΡƒΡ‡Π΅Π½ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π» аутопсии.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. Π‘ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹ΠΌΠΈ ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π° Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½Π°Ρ характСристика ΠΊΡ€ΠΎΠ²ΠΎ излияний/Π³Π΅ΠΌΠ°Ρ‚ΠΎΠΌ мягкотканной плотности, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ примСнСния ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° Ρ‚Π°ΠΊΡ‚ΠΈΠΊΠ° вСдСния ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π° ΠΏΡ€ΠΈ ΠΎΡΡ‚Π°Π½ΠΎΠ²ΠΈΠ²ΡˆΠ΅ΠΌΡΡ ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡŽΡ‰Π΅ΠΌΡΡ ΠΊΡ€ΠΎΠ²ΠΎΡ‚Π΅Ρ‡Π΅Π½ΠΈΠΈ. Π˜Π·ΡƒΡ‡Π΅Π½ морфологичСский субстрат гСморрагичСского ослоТнСния ΠΏΡ€ΠΈ Π½ΠΎΠ²ΠΎΠΉ вирусной ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ. ВсС Π±ΠΎΠ»ΡŒΠ½Ρ‹Π΅ ΠΏΡ€ΠΎΠ»Π΅Ρ‡Π΅Π½Ρ‹ консСрвативными ΠΈ минимально ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹ΠΌΠΈ ΠΏΡ€ΠΎΡ†Π΅Π΄ΡƒΡ€Π°ΠΌΠΈ (эмболизация, пункция с давящСй повязкой). Π’Ρ‹Π·Π΄ΠΎΡ€ΠΎΠ²Π΅Π»ΠΈ 15 (57,7%) ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ², ΡƒΠΌΠ΅Ρ€Π»ΠΈ ΠΎΡ‚ прогрСссирования ослоТнСний COVID-19 11 (42,3%) Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ….Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. КомплСксная ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-лабораторная ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ ΠΈΠ½ΡΡ‚Ρ€ΡƒΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Π°Ρ диагностика мягкотканных кровоизлияний ΠΏΡ€ΠΈ COVID-19-ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ позволяСт своСврСмСнно ΡƒΡΡ‚Π°Π½ΠΎΠ²ΠΈΡ‚ΡŒ топичСский Π΄ΠΈΠ°Π³Π½ΠΎΠ·, ΠΎΡ†Π΅Π½ΠΈΡ‚ΡŒ Ρ‚ΡΠΆΠ΅ΡΡ‚ΡŒ ΠΊΡ€ΠΎΠ²ΠΎΠΏΠΎΡ‚Π΅Ρ€ΠΈ, Π΅Π΅ остановку ΠΈΠ»ΠΈ ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ кровотСчСния. Π›Π΅Ρ‡Π΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π½ΠΎΡΠΈΡ‚ΡŒ консСрвативный ΠΈ минимально ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½Ρ‹ΠΉ Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€. ИспользованиС Ρ‚Π΅Ρ€ΠΌΠΈΠ½Π° β€œΠ³Π΅ΠΌΠ°Ρ‚ΠΎΠΌΠ°β€ мягких Ρ‚ΠΊΠ°Π½Π΅ΠΉ Ρƒ ΠΈΠ½Ρ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½Ρ‹Ρ… SARS-CoV-2 Π±ΠΎΠ»ΡŒΠ½Ρ‹Ρ… Π½Π΅ ΠΎΡ‚Ρ€Π°ΠΆΠ°Π΅Ρ‚ ΡΡƒΡ‚ΡŒ происходящСго патологичСского процСсса ΠΈ, с нашСй Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния, Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Ρ‚ΡŒΡΡ

    What Can Be Learned from the Polymerization of a Pyridine‐Based Two‐Component System

    No full text
    International audienceStable poly (4-vinyl pyridine)/pyridine gels prepared by dissolving solid polymer in pyridine (the equimolar ratio of the pyridine moieties to the pyridine solvent molecules) exhibit sensor properties rapidly and reversibly increasing their conductivity upon irradiation by light in the UV-Vis and NIR ranges. Both ionic and electronic mechanisms of conductivity were detected. The gels behave as polyelectrolytes involving the positively charged pyridine moieties and negatively charged saturated chains held together by a network of hydrogen bonds between the charged and neutral species. This interpretation is corroborated by the cryo-TEM images of the gel samples resembling chains of beads and the analysis of FT-IR and 1H-NMR spectra. Photoinduced proton transfer can thus be responsible for the observed ionic conductivity of the gels. Exposing gels to the ambient light can bring about ring opening of the pyridine moieties and of the free pyridine molecules with subsequent polycondensation of the initially formed 5-amino-2,4-pentadienal. The oligomers of the latter, aza-analogs of polyacetylene, can serve as molecular wires providing the electronic component of electrical conductivity. These oligomers can also contribute to the ionic conductivity and further stabilize the gels by cross-linking of the separate polymer chains

    Functional restoration of the Ca2 -myristoyl switch in a recoverin mutant

    No full text
    Recoverin is a neuronal calcium sensor protein that plays a crucial role in vertebrate phototransduction. It undergoes a Ca2+-myristoyl switch when Ca2+ binds to its two functional EF-hand motifs (EF-hands 2 and 3), each present in one of recoverin's two domains. Impairment of Ca2+-binding in recoverin leads to a disturbance of the Ca2+-myristoyl switch and loss of its regulatory properties, i.e. inhibiton of rhodopsin kinase. We have engineered recoverin mutants with either of the two functional EF-hands disabled, but with a functional Ca2+-binding site in EF-hand 4. While a defect in EF-hand 2 could not be rescued by the additional EF-hand 4, the impairment of EF-hand 3 was powerfully compensated by Ca2+-binding to EF-hand 4. For example, the myristoylated form of the latter mutant bound to membranes in a Ca2+-dependent way and was able to inhibit rhodopsin kinase in a way similar to that of the wild-type protein. Thus, for recoverin to undergo a Ca2+-myristoyl switch, it is necessary and sufficient to have either of the two EF-hands in the second domain in a functional state. On the basis of these results and inspection of published three-dimensional structures of recoverin, we propose a model highlighting the mutual interdependence of sterical configurations in EF-hands 3 and 4 of recoverin. (C) 2003 Elsevier Science Ltd. All rights reserved

    One of the Ca(2+) binding sites of recoverin exclusively controls interaction with rhodopsin kinase

    No full text
    Recoverin is a neuronal calcium sensor protein that controls the activity of rhodopsin kinase in a Ca(2+)-dependent manner. Mutations in the EF-hand Ca2+ binding sites are valuable tools for investigating the functional properties of recoverin. In the recoverin mutant E121Q (Rec E121Q ) the high-affinity Ca2+ binding site is disabled. The non-myristoylated form of Rec E121Q binds one Ca2+ via its second Ca(2+)-binding site (EF-hand 2), whereas the myristoylated variant does not bind Ca2+ at all. Binding of Ca2+ to non-myristoylated Rec E121Q apparently triggers exposure of apolar side chains, allowing for association with hydrophobic matrices. Likewise, an interaction surface for the recoverin target rhodopsin kinase is constituted upon Ca2+ binding to the non-acylated mutant. Structural changes resulting from Ca(2+)-occupation of EF-hand 2 in myristoylated and non-myristoylated recoverin variants are discussed in terms of critical conditions required for biological activity
    corecore