27 research outputs found
ΠΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ Π΄Π΅ΠΉΡΡΠ²ΠΈΠΉ ΠΏΡΠΈ Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ ΠΊΡΠΎΠ²ΠΎΠΈΠ·Π»ΠΈΡΠ½ΠΈΠΉ/Π³Π΅ΠΌΠ°ΡΠΎΠΌ ΠΌΡΠ³ΠΊΠΈΡ ΡΠΊΠ°Π½Π΅ΠΉ Ρ ΠΏΠΎΠΆΠΈΠ»ΡΡ Π±ΠΎΠ»ΡΠ½ΡΡ , ΠΈΠ½ΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ SARS-CoV-2
Aim. To determine ultrasound, computed tomography and angiographic image characteristics for soft tissue hemorrhages/hematomas, the sequence of using imaging methods in patients infected with SARS-CoV-2, to study the morphology of changes in soft tissues, to determine the essence of the concept and to develop treatment tactics for this complication of COVID-19.Material and methods. During 4 months of treatment of elderly patients (+60) infected with SARS-CoV-2, 40 patients were identified with soft tissue hemorrhages/hematomas, of which 26 (65%) patients with large hematomas (>10 cm in size and > 1000 ml in volume). The analysis of clinical and laboratory parameters, methods of instrumental diagnostics (ultrasound β 26 patients, CT β 10 patients, angiography β 9 patients, punctures β 6 patients) was carried out; autopsy material was studied in 11 cases.Results. Image characteristics of hemorrhages/hematomas of soft tissue density were obtained using modern instrumental methods, and the sequence of application of visualization methods was determined. A tactic for managing a patient with stopped and ongoing bleeding has been developed. The morphological substrate of hemorrhagic complications in a new viral infection was studied. All patients were treated with conservative and minimally invasive procedures (embolization, puncture with pressure bandage). 15 patients (57.7%) recovered, 11 patients (42.3%) died from the progression of COVID-19 complications.Conclusion. Comprehensive clinical and laboratory sequential instrumental diagnosis of soft tissue hemorrhages in COVID-19. Treatment should be conservative and significantly invasive. The use of the term βsoft tissue hematomaβ in SARS-CoV-2 infected patients is not a natural quality of the normal pathological process and should not be observed from our point of view.Π¦Π΅Π»Ρ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ: ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ Π²ΠΈΠ·ΡΠ°Π»ΡΠ½ΡΠ΅ ΡΠ»ΡΡΡΠ°Π·Π²ΡΠΊΠΎΠ²ΡΠ΅, ΠΊΠΎΠΌΠΏΡΡΡΠ΅ΡΠ½ΠΎ-ΡΠΎΠΌΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΈ Π°Π½Π³ΠΈΠΎΠ³ΡΠ°ΡΠΈΡΠ΅ΡΠΊΠΈΠ΅ ΠΊΡΠΈΡΠ΅ΡΠΈΠΈ ΠΌΡΠ³ΠΊΠΎΡΠΊΠ°Π½Π½ΡΡ
ΠΊΡΠΎΠ²ΠΎΠΈΠ·Π»ΠΈΡΠ½ΠΈΠΉ/Π³Π΅ΠΌΠ°ΡΠΎΠΌ, ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ Ρ Π±ΠΎΠ»ΡΠ½ΡΡ
, ΠΈΠ½ΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
SARS-CoV-2, ΠΈΠ·ΡΡΠΈΡΡ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ Π² ΠΌΡΠ³ΠΊΠΈΡ
ΡΠΊΠ°Π½ΡΡ
, ΠΎΠΏΡΠ΅Π΄Π΅Π»ΠΈΡΡ ΡΡΡΡ ΠΏΠΎΠ½ΡΡΠΈΡ ΠΈ Π²ΡΡΠ°Π±ΠΎΡΠ°ΡΡ Π»Π΅ΡΠ΅Π±Π½ΡΡ ΡΠ°ΠΊΡΠΈΠΊΡ ΠΏΡΠΈ ΡΠ°ΠΊΠΎΠΌ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΈ COVID-19.ΠΠ°ΡΠ΅ΡΠΈΠ°Π» ΠΈ ΠΌΠ΅ΡΠΎΠ΄Ρ. ΠΠ° 4 ΠΌΠ΅Ρ Π»Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠΎΠΆΠΈΠ»ΡΡ
Π±ΠΎΠ»ΡΠ½ΡΡ
(+60), ΠΈΠ½ΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
SARS-CoV-2, Π²ΡΡΠ²Π»Π΅Π½ΠΎ 40 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ ΠΌΡΠ³ΠΊΠΎΡΠΊΠ°Π½Π½ΡΠΌΠΈ ΠΊΡΠΎΠ²ΠΎΠΈΠ·Π»ΠΈΡΠ½ΠΈΡΠΌΠΈ/Π³Π΅ΠΌΠ°ΡΠΎΠΌΠ°ΠΌΠΈ, ΠΈΠ· Π½ΠΈΡ
26 (65%) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ² Ρ Π±ΠΎΠ»ΡΡΠΈΠΌΠΈ Π³Π΅ΠΌΠ°ΡΠΎΠΌΠ°ΠΌΠΈ (ΡΠ°Π·ΠΌΠ΅Ρ >10 ΡΠΌ ΠΈ ΠΎΠ±ΡΠ΅ΠΌ> 1000 ΠΌΠ»). ΠΡΠΎΠ²Π΅Π΄Π΅Π½ Π°Π½Π°Π»ΠΈΠ· ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½ΡΡ
ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Π΅ΠΉ, ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΠΎΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠΈ (Π£ΠΠ β 26 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΠΠ’ β 10 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², Π°Π½Π³ΠΈΠΎΠ³ΡΠ°ΡΠΈΡ β 9 Π±ΠΎΠ»ΡΠ½ΡΡ
, ΠΏΡΠ½ΠΊΡΠΈΠΈ β 6 ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ²), Π² 11 ΡΠ»ΡΡΠ°ΡΡ
ΠΈΠ·ΡΡΠ΅Π½ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π» Π°ΡΡΠΎΠΏΡΠΈΠΈ.Π Π΅Π·ΡΠ»ΡΡΠ°ΡΡ. Π‘ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠΌΠΈ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½ΡΠΌΠΈ ΠΌΠ΅ΡΠΎΠ΄Π°ΠΌΠΈ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° Π²ΠΈΠ·ΡΠ°Π»ΡΠ½Π°Ρ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊΠ° ΠΊΡΠΎΠ²ΠΎ ΠΈΠ·Π»ΠΈΡΠ½ΠΈΠΉ/Π³Π΅ΠΌΠ°ΡΠΎΠΌ ΠΌΡΠ³ΠΊΠΎΡΠΊΠ°Π½Π½ΠΎΠΉ ΠΏΠ»ΠΎΡΠ½ΠΎΡΡΠΈ, ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Π° ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎΡΡΡ ΠΏΡΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡ ΠΌΠ΅ΡΠΎΠ΄ΠΎΠ² Π²ΠΈΠ·ΡΠ°Π»ΠΈΠ·Π°ΡΠΈΠΈ. Π Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½Π° ΡΠ°ΠΊΡΠΈΠΊΠ° Π²Π΅Π΄Π΅Π½ΠΈΡ ΠΏΠ°ΡΠΈΠ΅Π½ΡΠ° ΠΏΡΠΈ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΈΠ²ΡΠ΅ΠΌΡΡ ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ°ΡΡΠ΅ΠΌΡΡ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΠΈ. ΠΠ·ΡΡΠ΅Π½ ΠΌΠΎΡΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΈΠΉ ΡΡΠ±ΡΡΡΠ°Ρ Π³Π΅ΠΌΠΎΡΡΠ°Π³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΡ ΠΏΡΠΈ Π½ΠΎΠ²ΠΎΠΉ Π²ΠΈΡΡΡΠ½ΠΎΠΉ ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ. ΠΡΠ΅ Π±ΠΎΠ»ΡΠ½ΡΠ΅ ΠΏΡΠΎΠ»Π΅ΡΠ΅Π½Ρ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°ΡΠΈΠ²Π½ΡΠΌΠΈ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡΠΌΠΈ ΠΏΡΠΎΡΠ΅Π΄ΡΡΠ°ΠΌΠΈ (ΡΠΌΠ±ΠΎΠ»ΠΈΠ·Π°ΡΠΈΡ, ΠΏΡΠ½ΠΊΡΠΈΡ Ρ Π΄Π°Π²ΡΡΠ΅ΠΉ ΠΏΠΎΠ²ΡΠ·ΠΊΠΎΠΉ). ΠΡΠ·Π΄ΠΎΡΠΎΠ²Π΅Π»ΠΈ 15 (57,7%) ΠΏΠ°ΡΠΈΠ΅Π½ΡΠΎΠ², ΡΠΌΠ΅ΡΠ»ΠΈ ΠΎΡ ΠΏΡΠΎΠ³ΡΠ΅ΡΡΠΈΡΠΎΠ²Π°Π½ΠΈΡ ΠΎΡΠ»ΠΎΠΆΠ½Π΅Π½ΠΈΠΉ COVID-19 11 (42,3%) Π±ΠΎΠ»ΡΠ½ΡΡ
.ΠΠ°ΠΊΠ»ΡΡΠ΅Π½ΠΈΠ΅. ΠΠΎΠΌΠΏΠ»Π΅ΠΊΡΠ½Π°Ρ ΠΊΠ»ΠΈΠ½ΠΈΠΊΠΎ-Π»Π°Π±ΠΎΡΠ°ΡΠΎΡΠ½Π°Ρ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½Π°Ρ ΠΈΠ½ΡΡΡΡΠΌΠ΅Π½ΡΠ°Π»ΡΠ½Π°Ρ Π΄ΠΈΠ°Π³Π½ΠΎΡΡΠΈΠΊΠ° ΠΌΡΠ³ΠΊΠΎΡΠΊΠ°Π½Π½ΡΡ
ΠΊΡΠΎΠ²ΠΎΠΈΠ·Π»ΠΈΡΠ½ΠΈΠΉ ΠΏΡΠΈ COVID-19-ΠΈΠ½ΡΠ΅ΠΊΡΠΈΠΈ ΠΏΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ ΡΠ²ΠΎΠ΅Π²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΡΡΡΠ°Π½ΠΎΠ²ΠΈΡΡ ΡΠΎΠΏΠΈΡΠ΅ΡΠΊΠΈΠΉ Π΄ΠΈΠ°Π³Π½ΠΎΠ·, ΠΎΡΠ΅Π½ΠΈΡΡ ΡΡΠΆΠ΅ΡΡΡ ΠΊΡΠΎΠ²ΠΎΠΏΠΎΡΠ΅ΡΠΈ, Π΅Π΅ ΠΎΡΡΠ°Π½ΠΎΠ²ΠΊΡ ΠΈΠ»ΠΈ ΠΏΡΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠ΅ ΠΊΡΠΎΠ²ΠΎΡΠ΅ΡΠ΅Π½ΠΈΡ. ΠΠ΅ΡΠ΅Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ Π½ΠΎΡΠΈΡΡ ΠΊΠΎΠ½ΡΠ΅ΡΠ²Π°ΡΠΈΠ²Π½ΡΠΉ ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΠΎ ΠΈΠ½Π²Π°Π·ΠΈΠ²Π½ΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅Ρ. ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΡΠ΅ΡΠΌΠΈΠ½Π° βΠ³Π΅ΠΌΠ°ΡΠΎΠΌΠ°β ΠΌΡΠ³ΠΊΠΈΡ
ΡΠΊΠ°Π½Π΅ΠΉ Ρ ΠΈΠ½ΡΠΈΡΠΈΡΠΎΠ²Π°Π½Π½ΡΡ
SARS-CoV-2 Π±ΠΎΠ»ΡΠ½ΡΡ
Π½Π΅ ΠΎΡΡΠ°ΠΆΠ°Π΅Ρ ΡΡΡΡ ΠΏΡΠΎΠΈΡΡ
ΠΎΠ΄ΡΡΠ΅Π³ΠΎ ΠΏΠ°ΡΠΎΠ»ΠΎΠ³ΠΈΡΠ΅ΡΠΊΠΎΠ³ΠΎ ΠΏΡΠΎΡΠ΅ΡΡΠ° ΠΈ, Ρ Π½Π°ΡΠ΅ΠΉ ΡΠΎΡΠΊΠΈ Π·ΡΠ΅Π½ΠΈΡ, Π½Π΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΡΡΡ
What Can Be Learned from the Polymerization of a PyridineβBased TwoβComponent System
International audienceStable poly (4-vinyl pyridine)/pyridine gels prepared by dissolving solid polymer in pyridine (the equimolar ratio of the pyridine moieties to the pyridine solvent molecules) exhibit sensor properties rapidly and reversibly increasing their conductivity upon irradiation by light in the UV-Vis and NIR ranges. Both ionic and electronic mechanisms of conductivity were detected. The gels behave as polyelectrolytes involving the positively charged pyridine moieties and negatively charged saturated chains held together by a network of hydrogen bonds between the charged and neutral species. This interpretation is corroborated by the cryo-TEM images of the gel samples resembling chains of beads and the analysis of FT-IR and 1H-NMR spectra. Photoinduced proton transfer can thus be responsible for the observed ionic conductivity of the gels. Exposing gels to the ambient light can bring about ring opening of the pyridine moieties and of the free pyridine molecules with subsequent polycondensation of the initially formed 5-amino-2,4-pentadienal. The oligomers of the latter, aza-analogs of polyacetylene, can serve as molecular wires providing the electronic component of electrical conductivity. These oligomers can also contribute to the ionic conductivity and further stabilize the gels by cross-linking of the separate polymer chains
Functional restoration of the Ca2 -myristoyl switch in a recoverin mutant
Recoverin is a neuronal calcium sensor protein that plays a crucial role in vertebrate phototransduction. It undergoes a Ca2+-myristoyl switch when Ca2+ binds to its two functional EF-hand motifs (EF-hands 2 and 3), each present in one of recoverin's two domains. Impairment of Ca2+-binding in recoverin leads to a disturbance of the Ca2+-myristoyl switch and loss of its regulatory properties, i.e. inhibiton of rhodopsin kinase. We have engineered recoverin mutants with either of the two functional EF-hands disabled, but with a functional Ca2+-binding site in EF-hand 4. While a defect in EF-hand 2 could not be rescued by the additional EF-hand 4, the impairment of EF-hand 3 was powerfully compensated by Ca2+-binding to EF-hand 4. For example, the myristoylated form of the latter mutant bound to membranes in a Ca2+-dependent way and was able to inhibit rhodopsin kinase in a way similar to that of the wild-type protein. Thus, for recoverin to undergo a Ca2+-myristoyl switch, it is necessary and sufficient to have either of the two EF-hands in the second domain in a functional state. On the basis of these results and inspection of published three-dimensional structures of recoverin, we propose a model highlighting the mutual interdependence of sterical configurations in EF-hands 3 and 4 of recoverin. (C) 2003 Elsevier Science Ltd. All rights reserved
One of the Ca(2+) binding sites of recoverin exclusively controls interaction with rhodopsin kinase
Recoverin is a neuronal calcium sensor protein that controls the activity of rhodopsin kinase in a Ca(2+)-dependent manner. Mutations in the EF-hand Ca2+ binding sites are valuable tools for investigating the functional properties of recoverin. In the recoverin mutant E121Q (Rec E121Q ) the high-affinity Ca2+ binding site is disabled. The non-myristoylated form of Rec E121Q binds one Ca2+ via its second Ca(2+)-binding site (EF-hand 2), whereas the myristoylated variant does not bind Ca2+ at all. Binding of Ca2+ to non-myristoylated Rec E121Q apparently triggers exposure of apolar side chains, allowing for association with hydrophobic matrices. Likewise, an interaction surface for the recoverin target rhodopsin kinase is constituted upon Ca2+ binding to the non-acylated mutant. Structural changes resulting from Ca(2+)-occupation of EF-hand 2 in myristoylated and non-myristoylated recoverin variants are discussed in terms of critical conditions required for biological activity