4,198 research outputs found

    Revisiting the displacement operator for quantum systems with position-dependent mass

    Full text link
    Recently R. N. Costa Filho et al. (PRA 84, 050102(R) (2011)) have introduced a position dependent infinitesimal translation operator which corresponds to a position dependent linear momentum and consequently to a position dependent effective mass quantum particle. Although there is no doubt in novelty of the idea and the formalism, we believe that some aspects of the quantum mechanics could be complemented in their original work. Here in this letter first we address those points and then an alternative will be introduced. Finally we apply the formalism for a quantum particle under a null potential confined in a square well and the results will be compared with those in the paper mentioned above.Comment: 4 pages, 3 figures. Final version to appear in Phys. Rev.

    Covariant theory of particle-vibrational coupling and its effect on the single-particle spectrum

    Get PDF
    The Relativistic Mean Field (RMF) approach describing the motion of independent particles in effective meson fields is extended by a microscopic theory of particle vibrational coupling. It leads to an energy dependence of the relativistic mass operator in the Dyson equation for the single-particle propagator. This equation is solved in the shell-model of Dirac states. As a result of the dynamics of particle-vibrational coupling we observe a noticeable increase of the level density near the Fermi surface. The shifts of the single-particle levels in the odd nuclei surrounding 208-Pb and the corresponding distributions of the single-particle strength are discussed and compared with experimental data.Comment: 27 pages, 8 figure

    Covariant density functional theory for antimagnetic rotation

    Full text link
    Following the previous letter on the first microscopic description of the antimagnetic rotation (AMR) in 105Cd, a systematic investigation and detailed analysis for the AMR band in the frame-work of tilted axis cranking (TAC) model based on covariant density functional theory are carried out. After performing the microscopic and self-consistentTAC calculations with an given density functional, the configuration for the observed AMR band in 105Cd is obtained from the single-particle Routhians. With the configuration thus obtained, the tilt angle for a given rotational frequency is determined self-consistently by minimizing the total Routhian with respect to the tilt angle. In such a way, the energy spectrum, total angular momenta, kinetic and dynamic moments of inertia, and the B(E2) values for the AMR band in 105Cd are calculated. Good agreement with the data is found. By investigating microscopically the contributions from neutrons and protons to the total angular momentum, the "two-shears-like" mechanism in the AMR band is clearly illus-trated. Finally, the currents leading to time-odd mean fields in the Dirac equation are presented and discussed in detail. It is found that they are essentially determined by the valence particles and/or holes. Their spatial distribution and size depend onthe specific single-particle orbitals and the rotational frequency.Comment: 35 pages, 17 figures, accepted by Phys. Rev.

    Pairing correlations in nuclei on the neutron-drip line

    Get PDF
    Paring correlations in weakly bound nuclei on the edge of neutron drip line is studied by using a three-body model. A density-dependent contact interaction is employed to calculate the ground state of halo nuclei 6^{6}He and 11^{11}Li, as well as a skin nucleus 24^{24}O. Dipole excitations in these nuclei are also studied within the same model. We point out that the di-neutron type correlation plays a dominant role in the halo nuclei 6^{6}He and 11^{11}Li having the coupled spin of the two neutrons SS=0, while the correlation similar to the BCS type is important in 24^{24}O. Contributions of the spin SS=1 and S=0 configurations are separately discussed in the low energy dipole excitations.Comment: 6 pages, 12 eps figure

    Fission barriers in actinides in covariant density functional theory: the role of triaxiality

    Full text link
    Relativistic mean field theory allowing for triaxial deformations is applied for a systematic study of fission barriers in the actinide region. Different pairing schemes are studied in details and it is shown that covariant density functional theory is able to describe fission barriers on a level of accuracy comparable with non-relativistic calculations, even with the best phenomenological macroscopic+microscopic approaches. Triaxiality in the region of the first saddle plays a crucial role in achieving that.Comment: 11 pages, 13 figure

    Spectroscopy of the heaviest nuclei (theory)

    Full text link
    Recent progress in the applications of covariant density functional theory (CDFT) to the description of the spectroscopy of the heaviest nuclei is reviewed. The analysis of quasiparticle spectra in actinides and the heaviest A ~ 250 nuclei provides a measure of the accuracy of the description of single-particle energies in CDFT and an additional constraint for the choice of effective interactions for the description of superheavy nuclei. The response of these nuclei to the rotation is rather well described by cranked relativistic Hartree+Bogoliubov theory and it serves as a supplementary tool in configuration assignment in odd-mass nuclei. A systematic analysis of the fission barriers with allowance for triaxial deformation shows that covariant density functional theory is able to describe fission barriers on a level of accuracy comparable with the best phenomenological macroscopic+microscopic approaches.Comment: 10 pages, 7 figures, invited talk of A.V. Afanasjev at the International Nuclear Physics Conference (INPC 2010), Vancouver, Canada, July 4-9, 2010, to be published in Journal of Physics G: Conference Series (JPCS

    Relativistic description of nuclear matrix elements in neutrinoless double-β\beta decay

    Full text link
    Neutrinoless double-β\beta (0νββ0\nu\beta\beta) decay is related to many fundamental concepts in nuclear and particle physics beyond the standard model. Currently there are many experiments searching for this weak process. An accurate knowledge of the nuclear matrix element for the 0νββ0\nu\beta\beta decay is essential for determining the effective neutrino mass once this process is eventually measured. We report the first full relativistic description of the 0νββ0\nu\beta\beta decay matrix element based on a state-of-the-art nuclear structure model. We adopt the full relativistic transition operators which are derived with the charge-changing nucleonic currents composed of the vector coupling, axial-vector coupling, pseudoscalar coupling, and weak-magnetism coupling terms. The wave functions for the initial and final nuclei are determined by the multireference covariant density functional theory (MR-CDFT) based on the point-coupling functional PC-PK1. The low-energy spectra and electric quadrupole transitions in 150{}^{150}Nd and its daughter nucleus 150{}^{150}Sm are well reproduced by the MR-CDFT calculations. The 0νββ0\nu\beta\beta decay matrix elements for both the 01+→01+0_1^+\rightarrow 0_1^+ and 01+→02+0_1^+\rightarrow 0_2^+ decays of 150{}^{150}Nd are evaluated. The effects of particle number projection, static and dynamic deformations, and the full relativistic structure of the transition operators on the matrix elements are studied in detail. The resulting 0νββ0\nu\beta\beta decay matrix element for the 01+→01+0_1^+\rightarrow 0_1^+ transition is 5.605.60, which gives the most optimistic prediction for the next generation of experiments searching for the 0νββ0\nu\beta\beta decay in 150{}^{150}Nd.Comment: 17 pages, 9 figures; table adde

    Nuclear Excitations Described by Randomly Selected Multiple Slater Determinants

    Get PDF
    We propose a new stochastic method to describe low-lying excited states of finite nuclei superposing multiple Slater determinants without assuming generator coordinates a priori. We examine accuracy of our method by using simple BKN interaction.Comment: Talk at International Symposium on Correlation Dynamics in Nuclei, Tokyo, Japan, 31 Jan.-- 4 Feb. 200

    Nuclear energy density functionals: what we can learn about/from their global performance?

    Full text link
    A short review of recent results on the global performance of covariant energy density functionals is presented. It is focused on the analysis of the accuracy of the description of physical observables of ground and excited states as well as to related theoretical uncertainties. In addition, a global analysis of pairing properties is presented and the impact of pairing on the position of two-neutron drip line is discussed.Comment: 11 pages, 9 figures, Proceedings of the conference on Nuclei and Mesoscopic Physics 2014, MS
    • …
    corecore