Following the previous letter on the first microscopic description of the
antimagnetic rotation (AMR) in 105Cd, a systematic investigation and detailed
analysis for the AMR band in the frame-work of tilted axis cranking (TAC) model
based on covariant density functional theory are carried out. After performing
the microscopic and self-consistentTAC calculations with an given density
functional, the configuration for the observed AMR band in 105Cd is obtained
from the single-particle Routhians. With the configuration thus obtained, the
tilt angle for a given rotational frequency is determined self-consistently by
minimizing the total Routhian with respect to the tilt angle. In such a way,
the energy spectrum, total angular momenta, kinetic and dynamic moments of
inertia, and the B(E2) values for the AMR band in 105Cd are calculated. Good
agreement with the data is found. By investigating microscopically the
contributions from neutrons and protons to the total angular momentum, the
"two-shears-like" mechanism in the AMR band is clearly illus-trated. Finally,
the currents leading to time-odd mean fields in the Dirac equation are
presented and discussed in detail. It is found that they are essentially
determined by the valence particles and/or holes. Their spatial distribution
and size depend onthe specific single-particle orbitals and the rotational
frequency.Comment: 35 pages, 17 figures, accepted by Phys. Rev.