12,601 research outputs found

    Comparative Monte Carlo Efficiency by Monte Carlo Analysis

    Full text link
    We propose a modified power method for computing the subdominant eigenvalue λ2\lambda_2 of a matrix or continuous operator. Here we focus on defining simple Monte Carlo methods for its application. The methods presented use random walkers of mixed signs to represent the subdominant eigenfuction. Accordingly, the methods must cancel these signs properly in order to sample this eigenfunction faithfully. We present a simple procedure to solve this sign problem and then test our Monte Carlo methods by computing the λ2\lambda_2 of various Markov chain transition matrices. We first computed λ2{\lambda_2} for several one and two dimensional Ising models, which have a discrete phase space, and compared the relative efficiencies of the Metropolis and heat-bath algorithms as a function of temperature and applied magnetic field. Next, we computed λ2\lambda_2 for a model of an interacting gas trapped by a harmonic potential, which has a mutidimensional continuous phase space, and studied the efficiency of the Metropolis algorithm as a function of temperature and the maximum allowable step size Δ\Delta. Based on the λ2\lambda_2 criterion, we found for the Ising models that small lattices appear to give an adequate picture of comparative efficiency and that the heat-bath algorithm is more efficient than the Metropolis algorithm only at low temperatures where both algorithms are inefficient. For the harmonic trap problem, we found that the traditional rule-of-thumb of adjusting Δ\Delta so the Metropolis acceptance rate is around 50% range is often sub-optimal. In general, as a function of temperature or Δ\Delta, λ2\lambda_2 for this model displayed trends defining optimal efficiency that the acceptance ratio does not. The cases studied also suggested that Monte Carlo simulations for a continuum model are likely more efficient than those for a discretized version of the model.Comment: 23 pages, 8 figure

    Horizon energy and angular momentum from a Hamiltonian perspective

    Full text link
    Classical black holes and event horizons are highly non-local objects, defined in terms of the causal past of future null infinity. Alternative, (quasi)local definitions are often used in mathematical, quantum, and numerical relativity. These include apparent, trapping, isolated, and dynamical horizons, all of which are closely associated to two-surfaces of zero outward null expansion. In this paper we show that three-surfaces which can be foliated with such two-surfaces are suitable boundaries in both a quasilocal action and a phase space formulation of general relativity. The resulting formalism provides expressions for the quasilocal energy and angular momentum associated with the horizon. The values of the energy and angular momentum are in agreement with those derived from the isolated and dynamical horizon frameworks.Comment: 39 pages, 3 figures, Final Version : content essentially unchanged but many small improvements made in response to referees, a few references adde

    Black brane entropy and hydrodynamics: the boost-invariant case

    Full text link
    The framework of slowly evolving horizons is generalized to the case of black branes in asymptotically anti-de Sitter spaces in arbitrary dimensions. The results are used to analyze the behavior of both event and apparent horizons in the gravity dual to boost-invariant flow. These considerations are motivated by the fact that at second order in the gradient expansion the hydrodynamic entropy current in the dual Yang-Mills theory appears to contain an ambiguity. This ambiguity, in the case of boost-invariant flow, is linked with a similar freedom on the gravity side. This leads to a phenomenological definition of the entropy of black branes. Some insights on fluid/gravity duality and the definition of entropy in a time-dependent setting are elucidated.Comment: RevTeX, 42 pages, 4 figure

    The strong coupling constant from lattice QCD with N_f=2 dynamical quarks

    Get PDF
    We compute ΛMSˉ\Lambda_{\bar{MS}} for two flavors of light dynamical quarks using non-perturbatively O(a)O(a) improved Wilson fermions. We improve on a recent calculation by employing Pad\'e-improved two-loop and three-loop perturbation theory to convert the lattice numbers to the MSˉ\bar{MS} scheme.Comment: Contribution to Lattice 2001 (matrix elements), typo correcte

    A return to strong radio flaring by Circinus X-1 observed with the Karoo Array Telescope test array KAT-7

    Full text link
    Circinus X-1 is a bright and highly variable X-ray binary which displays strong and rapid evolution in all wavebands. Radio flaring, associated with the production of a relativistic jet, occurs periodically on a ~17-day timescale. A longer-term envelope modulates the peak radio fluxes in flares, ranging from peaks in excess of a Jansky in the 1970s to an historic low of milliJanskys during the years 1994 to 2007. Here we report first observations of this source with the MeerKAT test array, KAT-7, part of the pathfinder development for the African dish component of the Square Kilometre Array (SKA), demonstrating successful scientific operation for variable and transient sources with the test array. The KAT-7 observations at 1.9 GHz during the period 13 December 2011 to 16 January 2012 reveal in temporal detail the return to the Jansky-level events observed in the 1970s. We compare these data to contemporaneous single-dish measurements at 4.8 and 8.5 GHz with the HartRAO 26-m telescope and X-ray monitoring from MAXI. We discuss whether the overall modulation and recent dramatic brightening is likely to be due to an increase in the power of the jet due to changes in accretion rate or changing Doppler boosting associated with a varying angle to the line of sight.Comment: 7 pages, 5 figures, accepted for publication in MNRAS 14 May 201

    Monte Carlo Determination of Multiple Extremal Eigenpairs

    Full text link
    We present a Monte Carlo algorithm that allows the simultaneous determination of a few extremal eigenpairs of a very large matrix without the need to compute the inner product of two vectors or store all the components of any one vector. The new algorithm, a Monte Carlo implementation of a deterministic one we recently benchmarked, is an extension of the power method. In the implementation presented, we used a basic Monte Carlo splitting and termination method called the comb, incorporated the weight cancellation method of Arnow {\it et al.}, and exploited a new sampling method, the sewing method, that does a large state space sampling as a succession of small state space samplings. We illustrate the effectiveness of the algorithm by its determination of the two largest eigenvalues of the transfer matrices for variously-sized two-dimensional, zero field Ising models. While very likely useful for other transfer matrix problems, the algorithm is however quite general and should find application to a larger variety of problems requiring a few dominant eigenvalues of a matrix.Comment: 22 pages, no figure
    • …
    corecore