65,279 research outputs found
Waves on Noncommutative Spacetimes
Waves on ``commutative'' spacetimes like R^d are elements of the commutative
algebra C^0(R^d) of functions on R^d. When C^0(R^d) is deformed to a
noncommutative algebra {\cal A}_\theta (R^d) with deformation parameter \theta
({\cal A}_0 (R^d) = C^0(R^d)), waves being its elements, are no longer
complex-valued functions on R^d. Rules for their interpretation, such as
measurement of their intensity, and energy, thus need to be stated. We address
this task here. We then apply the rules to interference and diffraction for d
\leq 4 and with time-space noncommutativity. Novel phenomena are encountered.
Thus when the time of observation T is so brief that T \leq 2 \theta w, where w
is the frequency of incident waves, no interference can be observed. For larger
times, the interference pattern is deformed and depends on \frac{\theta w}{T}.
It approaches the commutative pattern only when \frac{\theta w}{T} goes to 0.
As an application, we discuss interference of star light due to cosmic strings.Comment: 19 pages, 5 figures, LaTeX, added references, corrected typo
A transport coefficient: the electrical conductivity
I describe the lattice determination of the electrical conductivity of the
quark gluon plasma. Since this is the first extraction of a transport
coefficient with a degree of control over errors, I next use this to make
estimates of other transport related quantities using simple kinetic theory
formulae. The resulting estimates are applied to fluctuations, ultra-soft
photon spectra and the viscosity. Dimming of ultra-soft photons is exponential
in the mean free path, and hence is a very sensitive probe of transport.Comment: Talk given in ICPAQGP 2005, SINP, Kolkat
Signature of strong atom-cavity interaction on critical coupling
We study a critically coupled cavity doped with resonant atoms with
metamaterial slabs as mirrors. We show how resonant atom-cavity interaction can
lead to a splitting of the critical coupling dip. The results are explained in
terms of the frequency and lifetime splitting of the coupled system.Comment: 8 pages, 5 figure
Heavy Quarkonium Potential Model and the State of Charmonium
A theoretical explanation of the observed splittings among the P~states of
charmonium is given with the use of a nonsingular potential model for heavy
quarkonia. We also show that the recently observed mass difference between the
center of gravity of the states and the state of
does not provide a direct test of the color hyperfine interaction in heavy
quarkonia. Our theoretical value for the mass of the state is in
agreement with the experimental result, and its E1 transition width is
341.8~keV. The mass of the state is predicted to be 3622.3~MeV.Comment: 15 page REVTEX documen
Interacting Quantum Topologies and the Quantum Hall Effect
The algebra of observables of planar electrons subject to a constant
background magnetic field B is given by A_theta(R^2) x A_theta(R^2) the product
of two mutually commuting Moyal algebras. It describes the free Hamiltonian and
the guiding centre coordinates. We argue that A_theta(R^2) itself furnishes a
representation space for the actions of these two Moyal algebras, and suggest
physical arguments for this choice of the representation space. We give the
proper setup to couple the matter fields based on A_theta(R^2) to
electromagnetic fields which are described by the abelian commutative gauge
group G_c(U(1)), i.e. gauge fields based on A_0(R^2). This enables us to give a
manifestly gauge covariant formulation of integer quantum Hall effect (IQHE).
Thus, we can view IQHE as an elementary example of interacting quantum
topologies, where matter and gauge fields based on algebras A_theta^prime with
different theta^prime appear. Two-particle wave functions in this approach are
based on A_theta(R^2) x A_theta(R^2). We find that the full symmetry group in
IQHE, which is the semi-direct product SO(2) \ltimes G_c(U(1)) acts on this
tensor product using the twisted coproduct Delta_theta. Consequently, as we
show, many particle sectors of each Landau level have twisted statistics. As an
example, we find the twisted two particle Laughlin wave functions.Comment: 10 pages, LaTeX, Corrected typos, Published versio
21-cm absorption from galaxies at z ~ 0.3
We report the detection of 21-cm absorption from foreground galaxies towards
quasars, specifically z_gal = 0.3120 towards SDSS J084957.97+510829.0 (z_qso =
0.584; Pair-I) and z_gal = 0.3714 towards SDSS J144304.53+021419.3 (z_qso =
1.82; Pair-II). In both the cases, the integrated 21-cm optical depth is
consistent with the absorbing gas being a damped Lyman-\alpha (DLA) system. In
the case of Pair-I, strong Na I and Ca II absorption are also detected at z_gal
in the QSO spectrum. We identify an early-type galaxy at an impact parameter of
b ~ 14 kpc whose photometric redshift is consistent with that of the detected
metal and 21-cm absorption lines. This would be the first example of an
early-type galaxy associated with an intervening 21-cm absorber. The gas
detected in 21-cm and metal absorption lines in the outskirts of this luminous
red galaxy could be associated with the reservoir of cold H I gas with a low
level of star formation activity in the outer regions of the galaxy as reported
in the literature for z ~ 0.1 early-type galaxies. In the case of Pair-II, the
absorption is associated with a low surface brightness galaxy that, unlike most
other known quasar-galaxy pairs (QGPs) i.e. QSO sight lines passing through
disks/halos of foreground galaxies, is identified only via narrow optical
emission lines detected on top of the QSO spectra. Using SDSS spectra we infer
that the emission lines originate within ~ 5 kpc of the QSO sight line, and the
gas has metallicity [12+O/H] ~ 8.4 and star formation rate ~ 0.7-0.8 M_sun per
yr. The measured 21-cm optical depth can be reconciled with the N(H I) we
derive from the measured extinction (A_V=0.6) if either the H I gas is warm or
the extinction per hydrogen atom in this galaxy is much higher than the mean
value of the Small Magellanic Cloud. (Abridged)Comment: 8 pages, 7 figures, 3 tables (A&A in press
Staggered fermion matrix elements using smeared operators
We investigate the use of two kinds of staggered fermion operators, smeared
and unsmeared. The smeared operators extend over a hypercube, and tend to
have smaller perturbative corrections than the corresponding unsmeared
operators. We use these operators to calculate kaon weak matrix elements on
quenched ensembles at , 6.2 and 6.4. Extrapolating to the continuum
limit, we find . The
systematic error is dominated by the uncertainty in the matching between
lattice and continuum operators due to the truncation of perturbation theory at
one-loop. We do not include any estimate of the errors due to quenching or to
the use of degenerate and quarks. For the
electromagnetic penguin operators we find
and . We also use the ratio of unsmeared to
smeared operators to make a partially non-perturbative estimate of the
renormalization of the quark mass for staggered fermions. We find that tadpole
improved perturbation theory works well if the coupling is chosen to be
\alpha_\MSbar(q^*=1/a).Comment: 22 pages, 1 figure, uses eps
- …