26,122 research outputs found

    Continuous Crystallization in Hexagonally-Ordered Materials

    Full text link
    We demonstrate that the phase transition from columnar-hexagonal liquid crystal to hexagonal-crystalline solid falls into an unusual universality class, which in three-dimensional allows for both discontinuous transitions as well as continuous transitions, characterized by a single set of exponents. We show by a renormalization group calculation (to first order in ϵ=4d\epsilon = 4-d) that the critical exponents of the continuous transition are precisely those of the XY model, which gives rise to a continuous evolution of elastic moduli. Although the fixed points of the present model are found to be identical to the XY model, the elastic compliance to deformations in the plane of hexagonal order, μ\mu, is nonetheless shown to critically influence the crystallization transition, with the continuous transition being driven to first order by fluctuations as the in plane response grows weaker, μ0\mu \to 0.Comment: 4 pages, 2 figures (revised version

    Wigner function of noninteracting trapped fermions

    Full text link
    We study analytically the Wigner function WN(x,p)W_N({\bf x},{\bf p}) of NN noninteracting fermions trapped in a smooth confining potential V(x)V({\bf x}) in dd dimensions. At zero temperature, WN(x,p)W_N({\bf x},{\bf p}) is constant over a finite support in the phase space (x,p)({\bf x},{\bf p}) and vanishes outside. Near the edge of this support, we find a universal scaling behavior of WN(x,p)W_N({\bf x},{\bf p}) for large NN. The associated scaling function is independent of the precise shape of the potential as well as the spatial dimension dd. We further generalize our results to finite temperature T>0T>0. We show that there exists a low temperature regime TeN/bT \sim e_N/b where eNe_N is an energy scale that depends on NN and the confining potential V(x)V({\bf x}), where the Wigner function at the edge again takes a universal scaling form with a bb-dependent scaling function. This temperature dependent scaling function is also independent of the potential as well as the dimension dd. Our results generalize to any d1d\geq 1 and T0T \geq 0 the d=1d=1 and T=0T=0 results obtained by Bettelheim and Wiegman [Phys. Rev. B 84{\bf 84}, 085102 (2011)].Comment: 16 pages, 4 figure

    Soft-Pulse Dynamical Decoupling with Markovian Decoherence

    Full text link
    We consider the effect of broadband decoherence on the performance of refocusing sequences, having in mind applications of dynamical decoupling in concatenation with quantum error correcting codes as the first stage of coherence protection. Specifically, we construct cumulant expansions of effective decoherence operators for a qubit driven by a pulse of a generic symmetric shape, and for several sequences of π\pi- and π/2\pi/2-pulses. While, in general, the performance of soft pulses in decoupling sequences in the presence of Markovian decoherence is worse than that of the ideal δ\delta-pulses, it can be substantially improved by shaping.Comment: New version contains minor content clarification

    Momentum Driving: which physical processes dominate AGN feedback?

    Full text link
    The deposition of mechanical feedback from a supermassive black hole (SMBH) in an active galactic nucleus (AGN) into the surrounding galaxy occurs via broad-line winds which must carry mass and radial momentum as well as energy. The effect can be summarized by the dimensionless parameter η=dotMoutflow/dotMaccretion=(2ϵwc2)/vw2\eta=dot{M_outflow}/dot{M_accretion}= (2 \epsilon_w c^2)/v_w^2 where (\epslion_w \equiv dot{E}_w/(dot{M_accretion} c^2)) is the efficiency by which accreted matter is turned into wind energy in the disc surrounding the central SMBH. The outflowing mass and omentum are proportional to η\eta, and many prior treatments have essentially assumed that η=0\eta=0. We perform one- and two-dimensional simulations and find that the growth of the central SMBH is very sensitive to the inclusion of the mass and momentum driving but is insensitive to the assumed mechanical efficiency. For example in representative calculations, the omission of momentum and mass feedback leads to an hundred fold increase in the mass of the SMBH to over 10^{10} \Msun. When allowance is made for momentum driving, the final SMBH mass is much lower and the wind efficiencies which lead to the most observationally acceptable results are relatively low with ϵw104\epsilon_w \lesssim 10^{-4}.Comment: 10 pages, 8 figures, resubmitted to ApJ, added reference

    AGN feedback in an isolated elliptical galaxy: the effect of strong radiative feedback in the kinetic mode

    Full text link
    Based on two-dimensional high resolution hydrodynamic numerical simulation, we study the mechanical and radiative feedback effects from the central AGN on the cosmological evolution of an isolated elliptical galaxy. Physical processes such as star formation and supernovae are considered. The inner boundary of the simulation domain is carefully chosen so that the fiducial Bondi radius is resolved and the accretion rate of the black hole is determined self-consistently. In analogy to previous works, we assume that the specific angular momentum of the galaxy is low. It is well-known that when the accretion rates are high and low, the central AGNs will be in cold and hot accretion modes, which correspond to the radiative and kinetic feedback modes, respectively. The emitted spectrum from the hot accretion flows is harder than that from the cold accretion flows, which could result in a higher Compton temperature accompanied by a more efficient radiative heating, according to previous theoretical works. Such a difference of the Compton temperature between the two feedback modes, the focus of this study, has been neglected in previous works. Significant differences in the kinetic feedback mode are found as a result of the stronger Compton heating and accretion becomes more chaotic. More importantly, if we constrain models to correctly predict black hole growth and AGN duty cycle after cosmological evolution, we find that the favored model parameters are constrained: mechanical feedback efficiency diminishes with decreasing luminosity (the maximum efficiency being 103.5\simeq 10^{-3.5}) and X-ray Compton temperature increases with decreasing luminosity, although models with fixed mechanical efficiency and Compton temperature can be found that are satisfactory as well. We conclude that radiative feedback in the kinetic mode is much more important than previously thought.Comment: 35 pages, 7 figures, accepted by the Ap

    The beginnings of geography teaching and research in the University of Glasgow: the impact of J.W. Gregory

    Get PDF
    J.W. Gregory arrived in Glasgow from Melbourne in 1904 to take up the post of foundation Professor of Geology in the University of Glasgow. Soon after his arrival in Glasgow he began to push for the setting up of teaching in Geography in Glasgow, which came to pass in 1909 with the appointment of a Lecturer in Geography. This lecturer was based in the Department of Geology in the University's East Quad. Gregory's active promotion of Geography in the University was matched by his extensive writing in the area, in textbooks, journal articles and popular books. His prodigious output across a wide range of subject areas is variably accepted today, with much of his geomorphological work being judged as misguided to varying degrees. His 'social science' publications - in the areas of race, migration, colonisation and economic development of Africa and Australia - espouse a viewpoint that is unacceptable in the twenty-first century. Nonetheless, that viewpoint sits squarely within the social and economic traditions of Gregory's era, and he was clearly a key 'Establishment' figure in natural and social sciences research in the first half of the twentieth century. The establishment of Geography in the University of Glasgow remains enduring testimony of J.W. Gregory's energy, dedication and foresight

    Bayesian evidence for two companions orbiting HIP 5158

    Full text link
    We present results of a Bayesian analysis of radial velocity (RV) data for the star HIP 5158, confirming the presence of two companions and also constraining their orbital parameters. Assuming Keplerian orbits, the two-companion model is found to be e^{48} times more probable than the one-planet model, although the orbital parameters of the second companion are only weakly constrained. The derived orbital periods are 345.6 +/- 2.0 d and 9017.8 +/- 3180.7 d respectively, and the corresponding eccentricities are 0.54 +/- 0.04 and 0.14 +/- 0.10. The limits on planetary mass (m \sin i) and semimajor axis are (1.44 +/- 0.14 M_{J}, 0.89 +/- 0.01 AU) and (15.04 +/- 10.55 M_{J}, 7.70 +/- 1.88 AU) respectively. Owing to large uncertainty on the mass of the second companion, we are unable to determine whether it is a planet or a brown dwarf. The remaining `noise' (stellar jitter) unaccounted for by the model is 2.28 +/- 0.31 m/s. We also analysed a three-companion model, but found it to be e^{8} times less probable than the two-companion model.Comment: 5 pages, 4 figures, 3 tables. Added a couple of figures showing the residuals after one and two companion fits. Accepted for publication in MNRAS Letter
    corecore