4,973 research outputs found

    Field tuned critical fluctuations in YFe2Al10: Evidence from magnetization, 27Al (NMR, NQR) investigations

    Full text link
    We report magnetization, specific heat, and NMR investigations on YFe2Al10 over a wide range in temperature and magnetic field and zero field (NQR) measurements. Magnetic susceptibility, specific heat and spin-lattice relaxation rate divided by T (1/T1T) follow a weak power law (T^-0.4) temperature dependence, which is a signature of critical fluctuations of Fe moments. The value of the Sommerfeld-Wilson ratio and linear relation between 1/T1T and chi(T) suggest the existence of ferromagnetic correlations in this system. No magnetic ordering down to 50 mK in Cp(T) and the unusual temperature and field scaling of the bulk and NMR data are associated with a magnetic instability which drives the system to quantum criticality. The magnetic properties of the system are tuned by field wherein ferromagnetic fluctuations are suppressed and a crossover from quantum critical to FL behavior is observed with increasing magnetic field

    A Nuclear Physics Program at the ATLAS Experiment at the CERN Large Hadron Collider

    Full text link
    The ATLAS collaboration has significant interest in the physics of ultra-relativistic heavy ion collisions. We submitted a Letter of Intent to the United States Department of Energy in March 2002. The following document is a slightly modified version of that LOI. More details are available at: http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/SM/ionsComment: Letter of Intent submitted to the United States Department of Energy Nuclear Physics Division in March 2002 (revised version

    Erosion waves: transverse instabilities and fingering

    Full text link
    Two laboratory scale experiments of dry and under-water avalanches of non-cohesive granular materials are investigated. We trigger solitary waves and study the conditions under which the front is transversally stable. We show the existence of a linear instability followed by a coarsening dynamics and finally the onset of a fingering pattern. Due to the different operating conditions, both experiments strongly differ by the spatial and time scales involved. Nevertheless, the quantitative agreement between the stability diagram, the wavelengths selected and the avalanche morphology reveals a common scenario for an erosion/deposition process.Comment: 4 pages, 6 figures, submitted to PR

    Thermal and electrical transport in the spin density wave antiferromagnet CaFe4_{4}As3_{3}

    Full text link
    We present here measurements of the thermopower, thermal conductivity, and electrical resistivity of the newly reported compound CaFe4As3. Evidence is presented from specific heat and electrical resistivity measurements that a substantial fraction of the Fermi surface survives the onset of spin density wave (SDW) order at the Neel temperature TN=88 K, and its subsequent commensurate lockin transition at T2=26.4 K. The specific heat below T2 consists of a normal metallic component from the ungapped parts of the Fermi surface, and a Bardeen-Cooper- Schrieffer (BCS) component that represents the SDW gapping of the Fermi surface. A large Kadowaki-Woods ratio is found at low temperatures, showing that the ground state of CaFe4As3 is a strongly interacting Fermi liquid. The thermal conductivity of CaFe4As3 is an order of magnitude smaller than those of conventional metals at all temperatures, due to a strong phonon scattering. The thermoelectric power displays a sign change from positive to negative indicating that a partial gap forms at the Fermi level with the onset of commensurate spin density wave order at T2=26.4 K. The small value of the thermopower and the enhancements of the resistivity due to gap formation and strong quasiparticle interactions offset the low value of the thermal conductivity, yielding only a modest value for the thermoelectric figure of merit Z < 5x10^-6 1/K in CaFe4As3. The results of ab initio electronic structure calculations are reported, confirming that the sign change in the thermopower at T2 is reflected by a sign change in the slope of the density of states at the Fermi level. Values for the quasiparticle renormalization are derived from measurements of the specific heat and thermopower, indicating that as T->0, CaFe4As3 is among the most strongly correlated of the known Fe-based pnictide and chalcogenide systems.Comment: 8 pages with 5 figure

    ERROR PROPAGATION IN EXTENDED CHAOTIC SYSTEMS

    Get PDF
    A strong analogy is found between the evolution of localized disturbances in extended chaotic systems and the propagation of fronts separating different phases. A condition for the evolution to be controlled by nonlinear mechanisms is derived on the basis of this relationship. An approximate expression for the nonlinear velocity is also determined by extending the concept of Lyapunov exponent to growth rate of finite perturbations.Comment: Tex file without figures- Figures and text in post-script available via anonymous ftp at ftp://wpts0.physik.uni-wuppertal.de/pub/torcini/jpa_le

    Avalanche of Bifurcations and Hysteresis in a Model of Cellular Differentiation

    Full text link
    Cellular differentiation in a developping organism is studied via a discrete bistable reaction-diffusion model. A system of undifferentiated cells is allowed to receive an inductive signal emenating from its environment. Depending on the form of the nonlinear reaction kinetics, this signal can trigger a series of bifurcations in the system. Differentiation starts at the surface where the signal is received, and cells change type up to a given distance, or under other conditions, the differentiation process propagates through the whole domain. When the signal diminishes hysteresis is observed

    On Conceptually Simple Algorithms for Variants of Online Bipartite Matching

    Full text link
    We present a series of results regarding conceptually simple algorithms for bipartite matching in various online and related models. We first consider a deterministic adversarial model. The best approximation ratio possible for a one-pass deterministic online algorithm is 1/21/2, which is achieved by any greedy algorithm. D\"urr et al. recently presented a 22-pass algorithm called Category-Advice that achieves approximation ratio 3/53/5. We extend their algorithm to multiple passes. We prove the exact approximation ratio for the kk-pass Category-Advice algorithm for all k1k \ge 1, and show that the approximation ratio converges to the inverse of the golden ratio 2/(1+5)0.6182/(1+\sqrt{5}) \approx 0.618 as kk goes to infinity. The convergence is extremely fast --- the 55-pass Category-Advice algorithm is already within 0.01%0.01\% of the inverse of the golden ratio. We then consider a natural greedy algorithm in the online stochastic IID model---MinDegree. This algorithm is an online version of a well-known and extensively studied offline algorithm MinGreedy. We show that MinDegree cannot achieve an approximation ratio better than 11/e1-1/e, which is guaranteed by any consistent greedy algorithm in the known IID model. Finally, following the work in Besser and Poloczek, we depart from an adversarial or stochastic ordering and investigate a natural randomized algorithm (MinRanking) in the priority model. Although the priority model allows the algorithm to choose the input ordering in a general but well defined way, this natural algorithm cannot obtain the approximation of the Ranking algorithm in the ROM model
    corecore