1,303 research outputs found
Extinction imaging of a single quantum emitter in its bright and dark states
Room temperature detection of single quantum emitters has had a broad impact
in fields ranging from biophysics to material science, photophysics, or even
quantum optics. These experiments have exclusively relied on the efficient
detection of fluorescence. An attractive alternative would be to employ direct
absorption, or more correctly expressed "extinction" measurements. Indeed,
small nanoparticles have been successfully detected using this scheme in
reflection and transmission. Coherent extinction detection of single emitters
has also been reported at cryogenic temperatures, but their room temperature
implementation has remained a great laboratory challenge owing to the expected
weak signal-to-noise ratio. Here we report the first extinction study of a
single quantum emitter at ambient condition. We obtain a direct measure for the
extinction cross section of a single semiconductor nanocrystal both during and
in the absence of fluorescence, for example in the photobleached state or
during blinking off-times. Our measurements pave the way for the detection and
absorption spectroscopy of single molecules or clusters of atoms even in the
quenched state
Gene duplication in an African cichlid adaptive radiation
Background Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis “chilingali”) and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei). Results Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%–49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification. Conclusions These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation
Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium
Fluorescence lifetimes of nitrogen-vacancy color centers in individual
diamond nanocrystals were measured at the interface between a glass substrate
and a strongly scattering medium. Comparison of the results with values
recorded from the same nanocrystals at the glass-air interface revealed
fluctuations of fluorescence lifetimes in the scattering medium. After
discussing a range of possible systematic effects, we attribute the observed
lengthening of the lifetimes to the reduction of the local density of states.
Our approach is very promising for exploring the strong three-dimensional
localization of light directly on the microscopic scale.Comment: 9 pages, 4 figure
Single-Photon Imaging and Efficient Coupling to Single Plasmons
We demonstrate strong coupling of single photons emitted by individual
molecules at cryogenic and ambient conditions to individual nanoparticles. We
provide images obtained both in transmission and reflection, where an
efficiency greater than 55% was achieved in converting incident narrow-band
photons to plasmon-polaritons (plasmons) of a silver nanoparticle. Our work
paves the way to spectroscopy and microscopy of nano-objects with sub-shot
noise beams of light and to triggered generation of single plasmons and
electrons in a well-controlled manner
Minimal Surfaces, Screw Dislocations and Twist Grain Boundaries
Large twist-angle grain boundaries in layered structures are often described
by Scherk's first surface whereas small twist-angle grain boundaries are
usually described in terms of an array of screw dislocations. We show that
there is no essential distinction between these two descriptions and that, in
particular, their comparative energetics depends crucially on the core
structure of their screw-dislocation topological defects.Comment: 10 pages, harvmac, 1 included postscript figure, final versio
Phase Transition between the Cholesteric and Twist Grain Boundary C Phases
The upper critical temperature Tc2 for the phase transition between the
Cholesteric phase (N*) and the Twist Grain Boundary C phase with the layer
inclination tilted to the pitch axis (TGBct) in thermotropic liquid crystals is
determined by the mean field Chen-Lubensky approach. We show that the N*-TGBct
phase transition is split in two with the appearance of either the TGBA or the
TGB2q phase in a narrow temperature interval below Tc2. The latter phase is
novel in being superposed from two degenerate
TGBct phases with different (left and right) layers inclinations to the pitch
axis.Comment: Phys. Rev. E, to be publ; 24 pages, RevTeX + 3 ps figure
A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency
Single emitters have been considered as sources of single photons in various
contexts such as cryptography, quantum computation, spectroscopy, and
metrology. The success of these applications will crucially rely on the
efficient directional emission of photons into well-defined modes. To
accomplish a high efficiency, researchers have investigated microcavities at
cryogenic temperatures, photonic nanowires, and near-field coupling to metallic
nano-antennas. However, despite an impressive progress, the existing
realizations substantially fall short of unity collection efficiency. Here we
report on a theoretical and experimental study of a dielectric planar antenna,
which uses a layered structure for tailoring the angular emission of a single
oriented molecule. We demonstrate a collection efficiency of 96% using a
microscope objective at room temperature and obtain record detection rates of
about 50 MHz. Our scheme is wavelength-insensitive and can be readily extended
to other solid-state emitters such as color centers and semiconductor quantum
dots
The Structure of TGB Phases
We study the transition from the cholesteric phase to two TGB phases near
the upper critical twist : the Renn-Lubensky TGB phase, with layer
normal rotating in a plane perpendicular to the pitch axis, and the Bordeaux
TGB phase, with the layer normal rotating on a cone parallel to the pitch
axis. We calculate properties, including order-parameter profiles, of both
phases.Comment: 4 pages, 4 figures, Submitted to Physical Review E, Rapid
Communications, September 5, 2003; Revised manuscript (to the paper submitted
on March 18, 2003, cond-mat/0303365)that includes an important missing
reference and presents an improved analysis of a generalized mode
- …