1,303 research outputs found

    Extinction imaging of a single quantum emitter in its bright and dark states

    Full text link
    Room temperature detection of single quantum emitters has had a broad impact in fields ranging from biophysics to material science, photophysics, or even quantum optics. These experiments have exclusively relied on the efficient detection of fluorescence. An attractive alternative would be to employ direct absorption, or more correctly expressed "extinction" measurements. Indeed, small nanoparticles have been successfully detected using this scheme in reflection and transmission. Coherent extinction detection of single emitters has also been reported at cryogenic temperatures, but their room temperature implementation has remained a great laboratory challenge owing to the expected weak signal-to-noise ratio. Here we report the first extinction study of a single quantum emitter at ambient condition. We obtain a direct measure for the extinction cross section of a single semiconductor nanocrystal both during and in the absence of fluorescence, for example in the photobleached state or during blinking off-times. Our measurements pave the way for the detection and absorption spectroscopy of single molecules or clusters of atoms even in the quenched state

    Gene duplication in an African cichlid adaptive radiation

    Get PDF
    Background Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis “chilingali”) and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei). Results Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%–49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification. Conclusions These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation

    Spontaneous emission of a nanoscopic emitter in a strongly scattering disordered medium

    Full text link
    Fluorescence lifetimes of nitrogen-vacancy color centers in individual diamond nanocrystals were measured at the interface between a glass substrate and a strongly scattering medium. Comparison of the results with values recorded from the same nanocrystals at the glass-air interface revealed fluctuations of fluorescence lifetimes in the scattering medium. After discussing a range of possible systematic effects, we attribute the observed lengthening of the lifetimes to the reduction of the local density of states. Our approach is very promising for exploring the strong three-dimensional localization of light directly on the microscopic scale.Comment: 9 pages, 4 figure

    Single-Photon Imaging and Efficient Coupling to Single Plasmons

    Full text link
    We demonstrate strong coupling of single photons emitted by individual molecules at cryogenic and ambient conditions to individual nanoparticles. We provide images obtained both in transmission and reflection, where an efficiency greater than 55% was achieved in converting incident narrow-band photons to plasmon-polaritons (plasmons) of a silver nanoparticle. Our work paves the way to spectroscopy and microscopy of nano-objects with sub-shot noise beams of light and to triggered generation of single plasmons and electrons in a well-controlled manner

    Weight, Motion and Force: Conceptual Structural Changes in Ancient Knowledge as a Result of its Transmission

    Get PDF

    Minimal Surfaces, Screw Dislocations and Twist Grain Boundaries

    Full text link
    Large twist-angle grain boundaries in layered structures are often described by Scherk's first surface whereas small twist-angle grain boundaries are usually described in terms of an array of screw dislocations. We show that there is no essential distinction between these two descriptions and that, in particular, their comparative energetics depends crucially on the core structure of their screw-dislocation topological defects.Comment: 10 pages, harvmac, 1 included postscript figure, final versio

    Phase Transition between the Cholesteric and Twist Grain Boundary C Phases

    Full text link
    The upper critical temperature Tc2 for the phase transition between the Cholesteric phase (N*) and the Twist Grain Boundary C phase with the layer inclination tilted to the pitch axis (TGBct) in thermotropic liquid crystals is determined by the mean field Chen-Lubensky approach. We show that the N*-TGBct phase transition is split in two with the appearance of either the TGBA or the TGB2q phase in a narrow temperature interval below Tc2. The latter phase is novel in being superposed from two degenerate TGBct phases with different (left and right) layers inclinations to the pitch axis.Comment: Phys. Rev. E, to be publ; 24 pages, RevTeX + 3 ps figure

    A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency

    Full text link
    Single emitters have been considered as sources of single photons in various contexts such as cryptography, quantum computation, spectroscopy, and metrology. The success of these applications will crucially rely on the efficient directional emission of photons into well-defined modes. To accomplish a high efficiency, researchers have investigated microcavities at cryogenic temperatures, photonic nanowires, and near-field coupling to metallic nano-antennas. However, despite an impressive progress, the existing realizations substantially fall short of unity collection efficiency. Here we report on a theoretical and experimental study of a dielectric planar antenna, which uses a layered structure for tailoring the angular emission of a single oriented molecule. We demonstrate a collection efficiency of 96% using a microscope objective at room temperature and obtain record detection rates of about 50 MHz. Our scheme is wavelength-insensitive and can be readily extended to other solid-state emitters such as color centers and semiconductor quantum dots

    The Structure of TGBC_C Phases

    Full text link
    We study the transition from the cholesteric phase to two TGBC_C phases near the upper critical twist kc2k_{c2}: the Renn-Lubensky TGBC_C phase, with layer normal rotating in a plane perpendicular to the pitch axis, and the Bordeaux TGBC_C phase, with the layer normal rotating on a cone parallel to the pitch axis. We calculate properties, including order-parameter profiles, of both phases.Comment: 4 pages, 4 figures, Submitted to Physical Review E, Rapid Communications, September 5, 2003; Revised manuscript (to the paper submitted on March 18, 2003, cond-mat/0303365)that includes an important missing reference and presents an improved analysis of a generalized mode
    corecore